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About five years ago together with my collaborators I have found some
curious phenomenon in string theory, i.e. appearance of exotic discrete sym-
metry in the theory [1]. This phenomenon is now called as Mathieu moon-
shine and is under intensive study. Today I would like to give you a brief
introduction to moonshine phenomena which possibly play interesting role
in string theory in the future.

Before going into the moonshine phenomenon in string theory let me
briefly recall the story of monstrous moonshine which is very well-known.
Modular J function has a ¢-series expansion

1
J(q) = = + 744 + 196884 + 21493760¢> + 864299970¢°
q

+20245856256¢" + 3332026406004° + - - -

q=2¢e"" Im(1) >0, J(1)=J(

aT—i-b) a b
cr+d”’ d

) € SL(2,72)

It turns out g-expansion coefficients of J-function are decomposed into a sum
of dimensions of irreducible representations of the monster group M as

196884 = 1 4 196883, 21493760 = 1 4 196883 + 21296876,

864299970 = 2 x 1 + 2 x 196883 + 21296876 + 842609326,

20245856256 = 1 x 1 4 3 x 196883 + 2 x 21296876
+842609326 + 19360062527, - - -

Dimensions of some irreducible representations of monster are in fact given
by
{1, 196883, 21296876, 842609326,
18538750076, 19360062527 - - -}

Monster group is the largest sporadic discrete group, of order ~ 10°® and
the strange relationship between modular form and the largest discrete group
was first noted by McKay.



To be precise we may write as

Ji(1)=J(q) — 744 = Z c(n)q", c(0)=0
= ;1 Trymlxq", dimV (n) = c(n)

McKay-Thompson series is given by
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n=-—1

where Ty (,) g denotes the character of a group element g in the representa-
tion V' (n). This depends on the conjugacy class g of M. If McKay-Thompson
series is known for all conjugacy classes, decomposition of V' (n) into irre-
ducible representations become uniquely determined. Series .J; are modular
forms with respect to subgroups of SL(2,7) and possess similar properties
like the modular J-function such as the genus=0 (Hauptmodul) property.
Phenomenon of monstrous moonshine has been understood mathemati-
cally in early 1990’s using the technology of vertex operator algebra. How-
ever, we still do not have a ’simple’ physical explanation of this phenomenon.

1 Mathieu moonshine

K3 surface :

We consider string theory compactified on K3 surface. K3 surface is a
complex 2-dimensional hyperKahler manifold and ubiquitous in string theory.
It possesses SU(2) holonomy and a holomorphic 2-form. Thus the string
theory on K3 has an N'=4 superconformal symmetry with the central charge
¢ = 6 which contains SU(2),-; affine symmetry.

Now instead of modular J-function we consider the elliptic genus of K3
surface. Elliptic genus describes the topological invariants of the target man-
ifold and counts the number of BPS states in the theory. Using world-sheet
variables it is written as

Zelliptic(z; 7—) = TTHL ><7'{R(_1)FL+FR€47riz‘]g’0qLO_iqio_i

Here Ly denotes the zero mode of the Virasoro operators and Fp and Fpg
are left and right moving fermion numbers. J; denotes the Cartan generator
of affine SU(2);. In elliptic genus the right moving sector is frozen to the
supersymmetric ground states (BPS states) while in the left moving sector

all the states in the left-moving Hilbert space Hj contribute.



In general it is difficult to compute elliptic genera, however, we were able
to evaluate it by making use of Gepner models [2]. Elliptic genus is given by
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Here 0;(7, z) are Jacobi theta functions.
We want to see how the Hilbert space Hy in elliptic genus decompose
into irreducible representations of N'=4 superconformal algebra (SCA).

Highest weight states of N'=4 SCA are parametrized by the eigenvalues
of Ly and Jj.

Lo|h, £) = h|h, ), T3, 0) = €|, 0)

There are two different types of representations in ¢ = 6 SCA.
In the Ramond sector

BPS (massless) rep. h=—; (=0,
non-BPS (massive) rep. h >

Character of a representation is defined as
TTR(—l)F qLo 64m‘zjg

where R denotes the representation space.
Index is given by the value of the character at z = 0,

Index(R) = Trr(—1)" ¢
BPS representations have a non-vanishing index

index (BPS, £ =0) =1
1

index (BPS, ¢ = 5) = —2

while non-BPS reps. have vanishing indices
. 1
index (non-BPS, ¢ = 5) = 0.

Characters are given explicitly as [3]
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while non-BPS characters are given by
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Function u(7,2) is a typical example of Mock theta function (Lerch sum or

Appel function). Mock theta functions look like theta functions but they have
anomalous modular transformation laws and are difficult to handle. Recently
there were developments in understanding the nature of Mock theta functions
due to Zwegers|[4].

He has introduced a method of regularization which is similar to the ones
used in physics. It improves the modular property of Mock theta functions
so that they transform as analytic Jacobi forms.

Now let us make a decomposition of elliptic genus into a sum of characters
of N'=4 representaions

Zs3(1,2) = 24cthf£€:0(T, 2)+2) A(n)chon=BPS (7 )

h=14n=1
n>0 1 2

At smaller values of n, expansion coefficients A(n) may be found by direct
series expansion of Zx3. We find, A(0) = —1 and

n |1 2 3 4 5 6 7 8 )
A(n) |45 231 770 2277 5796 13915 30843 65550 ...

Dimensions of some irreducible reps. of Mathieu group Ms, appear in (1)

dimensions : { 45 231 770 990 1771 2024 2277 @)
3312 3520 5313 5544 5796 10395 ---}

A(6) = 13915 = 3520 + 10395,
A(7) = 30843 = 10395 + 5796 + 5544 + 5313 + 2024 + 1771

[1]
My, is a subgroup of Sy (permutation group of 24 objects) and its order
is given by ~ 10°.
My is known for its many interesting arithmetic properties and in particular
intimately tied to the Golay code of efficient error corrections.
Monster D Conway D Mathieu D - - -



2 Mathieu moonshine conjecture

Expansion coefficients of K3 elliptic genus into N'=4 characters are given
by the sum of dimensions of representations of Mathieu group Moy

We were able to derive analogues of McKay-Thompson series [5, 6]. And
then the multiplicities Cr(n) of the decomposition of A(n) into representa-
tions R

A(n) =) Cg(n)dimR

were unambiguously determined. It tuned out that Cr(n) are all positive
integers up to n &~ 1000 and this gives a very strong evidence of Mathieu
moonshine conjecture.

The conjecture is now proved mathematically using the method of math-
ematical induction. [7]

Unfortunately the proof so far did not provide much insight into the
nature of Mathieu moonshine. The situation looks a bit like the case of
monstrous moonshine. 24 of My, will certainly be the Euler number of K3 and
My, permutes homology classes. There are, however, various indications that
string theory on K3 can not have such a high symmetry as Ms,. Instead of
the total Hilbert space the BRS subsector of the theory may possibly possess
an enhanced symmetry. It will be interesting to look into the algebraic
structures of BPS states to explain Mathieu moonshine.

3 More Moonshine Phenomena

Mathieu moonshine exists at the intersection of string theory, K3 surface (ge-
ometry), (Mock) modular forms and sporadic discrete symmetry and appears
to possess interesting mixture of physics and mathematics. Recently there
have been intense interests in exploring new types of moonshine phenomena
other than Mathieu moonshine. Already several types of new moonshine
phenomena have been discovered.

Umbral moonshine 8]

fermions on 24 dim. lattice

spin 7 manifold

Due to time limitation we discuss only about Umbral moonshine. Umbral

moonshine has a mysterious relationship to the Niemeier lattice. It is known
there are 23 (24, if we include Leech lattice) types of self-dual lattices in



24 dimensions. It is given by the combination of root lattices of A-D-E
type together with appropriate weight vectors so that the lattice becomes
self-dual. The simplest examples are

(4)* (k=1)
(4z) " (k=
(A3)° (k=3

etc. If one divides the automorphism groups of Niemeier lattice by the au-
tomorphism group of A-D-E lattice, one obtain isolated discrete groups

[automorphism group of lattice]y

G = [Weyl group of root lattice]y
It turns out that G}.s become the symmetry groups of the Umbral moonshine.
In fact the first one agrees with the Mathieu group G; = My, and reproduces
the Mathieu moonshine. The second one G5 agrees with the Mathieu group
M, and is assumed to be related to 4-dimensional hyperKéahler manifold
with ¢ =12 (k = 2).
Analogue of K3 elliptic genus is given by

Zh=2) =4 (02<z>03<z>>2 . <92<z>94(z>>2 . (03<z>04<z>>2

02(0)65(0) 02(0)64(0) 05(0)04(0)

By expanding Z(k = 2) in terms of characters of representations of ¢ =
12, N' = 4 algebra one finds the expansion coefficients decompose into the
symmetry group Mis.

Here, however, there is something awkward: Z(k = 2) does not contain
the contribution of vacuum operator (h = 0 in N.S sector) thus the theory
appears to describe the geometry of a (singular) non-compact four-fold. The
rest of Umbral moonshine series has the same property (absence of identity
operator) and their geometrical interpretation is somewhat obscure.

Recently, we have used N' = 4 Liouville theory [9] which is known to
possess some special duality property [10]. It is possible to embed Umbral
series into A/ = 4 Liouville theory and by using duality we can map Umbral
theory at ¢ = 6k to its dual theory at ¢ = 6. Thus a Umbral moonshine at
¢ = 6k can be mapped to a dual moonshine at ¢ = 2. We hope this is going
to help geometrical interpretation of Umbral moonshine.

Moonshine symmetries recently discovered in string theory are still very
mysterious and we may encounter many more surprises in the near future.
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