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Itô’s theorems on chaos expansions

and martingale representations

Shinzo Watanabe

1. Introduction.

So many comments and appreciations have been given on magnificent contributions
by Kiyosi Itô (1915–2008) in probability theory. And yet, I would like to repeat again,
in the year of Itô’s centenary, some of remarkable and characteristic features of his work
in stochastic analysis.

As he recollected in [It 8], he came across with Kolmogorov’s book, Grundbegriffe
der Wahrscheinlichkeitsrechnung, when he was a student of the University of Tokyo
around 1935. Kolmogorov founded the probability theory, as we know well, on a rigorous
basis of modern analysis such as the theory of measures and integrations. He formulated
random phenomena in natural and social worlds as mathematical models called stochas-
tic processes. In his formulation, a stochastic process is a collection of random variables
defined on a probability space, depending on time, taking their values in a finite dimen-
sional state space, typically, in a Euclidean space. A stochastic process is determined
uniquely by the system of joint distributions of random variables at finite different time
points and, conversely, it can be constructed from a given consistent family of distribu-
tions so that they coincide with joint distributions by Kolmogorov’s extension theorem.
Thus, a Markov process, which is a particular and most important case of stochastic
processes, is determined by and constructed from the system of transition probabilities.
Kolmogorov, then one of his followers, W. Feller, obtained the fundamental evolution
equations governing transition probabilities so that Markov processes can be obtained
and studied completely through the equations of Kolmogorov and Feller.

In a striking contrast with such an analytical approach to Markov processes, P. Lévy,
who is also a great pioneer of modern probability theory, gave another one, which may be
called a sample paths theoretic approach. Having successfully determined the canonical
form of infinitely divisible distributions, known now as the Lévy-Khinchin canonical
form, he rewrote this result in terms of sample functions of Lévy processes, (additive
processes, differential processes, or processes with independent increments). He regarded
a stochastic processes as a random variable taking its values in a function space (a space
of paths); a sample function is each value taken by random variable. He represented
a sample function of a Lévy process as a sum of a sample function of Wiener process,
(of which N. Wiener, still another great pioneer of the modern probability theory, has
successfully constructed in 1923) and a certain random function given by an integral with
respect to Poisson random measures.

Itô was interested in this Lévy’s approach: In studying carefully the work of Lévy
which is deep but looking somewhat a little intuitive, he wished to complete it on a
rigorous foundation given by Kolmogorov: He succeeded in this work and published it
in [It 1]. He then applied the same idea to sample functions of Markov processes deter-
mined by Kolmogorov-Feller’s equation. By introducing an original notion of stochastic
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integrals by sample functions of Wiener processes and Poisson random measures, he
finally succeeded in writing down the fundamental equation for a sample function of
Markov process, (cf. [It 2], [It 3]). Thus, Itô’s theory of stochastic differential equations
has been completed: in this theory, he established a kind of Newton-Leibniz differential
and integral calculus which can analyze sample functions of stochastic processes (cf. e.g.
[It 4], [It 7]). We will not review on Itô’s calculus in this note: So many textbooks and
monographs have treated on this subject and so many comments and appreciations have
been given. In the next section, we review on one topic in Itô’s calculus, his theory of
chaos expansions, as a main mathematical content of this note.

2. Chaos Expansions.

In the following, all stochastic processes are given on some probability space
(Ω,F , P ) although we usually suppress stochastic parameter ω ∈ Ω.

For n = 1, 2, . . . , d, 1 ≤ d ≤ ∞, let w(t) = (w(t)), 0 ≤ t < ∞ be the d-dimensional
Wiener process: w(t) = (w1(t), . . . , wd(t)).1 Set

Fw
s,t = σ[w(v)− w(u); s ≤ u ≤ v ≤ t].2

Then, obviously, for 0 ≤ r ≤ s ≤ t, σ-fields Fw
r,s and Fw

s,t are independent and generate
the σ-field Fw

r,t. We denote this fact as

Fw
r,s ⊗Fw

s,t = Fw
r,t. (2.1)

The family {Fw
s,t} of σ-fields is called a Wiener noise.

Let (X,BX , n(dx)) be a σ-finite measure space and let p = (p(t), t ∈ Dp) be a
stationary Poisson point process on X with the characteristic measure n(dx) as defined
in Definition 9.1 of [Ik-Wa, p. 43]. When we consider a Wiener process and Poisson
point process together on a same probability space, we always assume that they are
given independently. Set, for 0 ≤ s ≤ t < ∞,

Fp
s,t = σ[Np((u, v]× E)|s ≤ u ≤ v ≤ t, E ∈ BX ]

where Np(A) = #{t ∈ Dp|(t, p(t)) ∈ A} is the counting measure associated with the
point process p. Then we have obviously

Fp
r,s ⊗Fp

s,t = Fp
r,t for 0 ≤ r ≤ s ≤ t. (2.2)

The family {Fp
s,t} of σ -fields is called a Poisson noise.

Now we review on Itô’s works on chaos expansion for functionals of Wiener and
Poisson noises following [It 5] and [It 6]. Certainly, Itô has been motivated by the work
of N. Wiener [Wi 1]: Wiener’s work was incomplete in the point that chaos integrals

1In the case d = ∞, this should be written as w(t) = (w1(t), . . . , wn(t), . . . .), since there is no

d-component. This convention is always used below without mentioning.
2We set Fw

s,∞ =
W

t≥s Fw
s,t.
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of different orders are not necessarily orthogonal and Itô corrected this by introducing
the notion of multiple Wiener integrals. Multiple Wiener integrals can be equivalently
defined, as Itô himself remarked in Section 5 of [It 5], by successive Itô’s stochastic
integrals. We follow here this second approach of Itô; it has a merit, for example, that
the martingale representation theorem can be almost immediately obtained from this.
It should be remarked that Wiener’s monograph [Wi 2] corrected his incomplete chaos
integrals and discussed many interesting and important applications.

Let a Wiener process w and a Poisson point process p be given. Let F (w,p)
s,t be the

σ-field generated by mutually independent σ-fields Fw
s,t and Fp

s,t. Then we have

F (w,p)
r,s ⊗F (w,p)

s,t = F (w,p)
r,t , r ≤ s ≤ t.3 (2.3)

For a sub σ-field G of F , we denote by L2(G) the real L2-space formed of all real,
G-measurable and square-integrable random variables. The chaos expansion theorems
are concerned with the orthogonal decomposition of the space L2(F (w,p)

s,t ).
Set X̂ = X ∪· {1, 2, . . . , d}4, BX̂ = {E ⊂ X̂|E ∩ X ∈ BX} and n̂(dx) be a σ-finite

measure on (X̂,BX̂) defined by

n̂(E) = n(E ∩X) +
d∑

i=1

1E∩{1,2,...,d}(i).

Define the compensated counting measure Ñp by

Ñp(dtdx) = Np(dtdx)− dtn(dx).

For each fixed 0 ≤ s < ∞, define a filtration F(s) by

F(s) =
{F (w,p)

s,t ; s ≤ t
}
.

Then, for an F(s)-predictable f(τ), τ ≥ s, such that E
[ ∫ t

s
|f(τ)|2d τ

]
< ∞, Itô’s

stochastic integral
∫ t

s
f(s)dwi(s) is defined for i = 1, 2, . . . , d and, for F(s)-predictable

process f(τ, x) on [s,∞) ×X in the sense of Definition 3.3 of [Ik-Wa, p. 61] such that
E

[ ∫ t

s
dτ

∫
X
|f(τ, x)|2n(dx)

]
< ∞, stochastic integral

∫ t

s

∫

X

f(τ, x)Ñp(dτ, dx)

is defined as in p. 63 of [Ik-Wa]. Hence, if f(τ, x) on [s,∞)× X̂ is F(s)-predictable and

3For convenience, we allow the case w ≡ 0 or p ≡ 0 so that F(w,0)
s,t coincides with Fw

s,t and F(0,p)
s,t

with Fp
s,t.

4
S· is the disjoint union (i.e., a sum).
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E

[ ∫ t

s

dτ

∫

X̂

|f(τ, x)|2n̂(dx)
]

< ∞,

we can define the stochastic integral

∫ t

s

∫

X̂

f(τ, x)M(dτ, dx) :=
d∑

i=1

∫ t

s

f(τ, i)dwi(τ) +
∫ t

s

∫

X

f(τ, x)Ñ(dτ, dx) (2.4)

and it holds that

E

[(∫ t

s

∫

X̂

f(τ, x)M(dτ, dx)
)2]

= E

[ ∫ t

s

dτ

∫

X̂

|f(τ, x)|2 n̂(dx)
]

=
d∑

i=1

E

[ ∫ t

s

|f(τ, i)|2 dτ

]
+ E

[ ∫ t

s

dτ

∫

X

|f(τ, x)|2 n(dx)
]
. (2.5)

Let, for each n = 1, 2, . . . and 0 ≤ s < t ≤ ∞,

∆(n)
s,t = {(t1, t2, . . . , tn−1, tn;x1, . . . , xn−1, xn)

| s < t1 < t2 < · · · < tn−1 < tn < t, xi ∈ X̂, i = 1, . . . , n}

and L2(∆(n)
s,t ; dt1, dt2, . . . , dtn−1, dtn, n̂(dx1) · · · n̂(dxn−1)n̂(dxn))5 be the real L2-space

formed of real, square-integrable, measurable functions f = (f(t1, t2, . . . , tn−1, tn;
x1, . . . , xn−1, xn)) on ∆(n)

s,t with the norm

‖f‖
L2(∆

(n)
s,t )

=
( ∫ t

s

dtn

∫

X̂

n̂(dxn)
[ ∫ tn

s

dtn−1

∫

X̂

n̂(dxn−1)

[
· · ·

[ ∫ t2

s

dt1

∫

X̂

n̂(dx1)f(t1, . . . , tn−1, tn;x1, . . . , xn−1, xn)2
]
· · ·

]])1/2

.

Then, for f ∈ L2(∆(n)
s,t ), we can define the iterated stochastic integral I(n)(f)(s, t)

by

I(n)(f)(s, t)

:=
∫ t

s

∫

X̂

M(dtn, dxn)
[ ∫ tn−

s

∫

X̂

M(dtn−1, dxn−1)

· · ·
[ ∫ t2−

s

∫

X̂

f(t1, t2, . . . , tn−1, tn;x1, x2, . . . , xn−1, xn)M(dt1, dx1)
]
· · ·

]
(2.6)

5This is often denoted by L2(∆
(n)
s,t ) to simplify the notation.
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by noting that, in each step, integrands are F(s)-predictable processes. Then we have
I(n)(f)(s, t) ∈ L2(F (w,p)

s,t ) with

‖I(n)(f)(s, t)‖
L2(F(w,p)

s,t )
=‖f‖

L2(∆
(n)
s,t )

. (2.7)

It holds that, if n 6= m, f ∈ L2(∆(n)
s,t ) and g ∈ L2(∆(m)

s,t ), then I(n)(f) and I(m)(g)

are orthogonal in L2(F (w,p)
s,t ).

The following result was essentially obtained6, for the case p = 0 (i.e. the case of
Wiener noise) in [It 5] and, for the general case in [It 6].

Theorem 2.1. If f ∈ L2(F (w,p)
s,t ), there exists a sequence f (n) = (f (n)(t1, . . . , tn,

x1, . . . , xn)) ∈ L2(4(n)
s,t ), n = 1, 2, . . . , satisfying

∞∑
n=1

‖f (n)‖2
L2(4(n)

s,t )
< ∞ (2.8)

such that the following expansion holds:

f = E(f) +
∞∑

n=1

In(f (n))(s, t). (2.9)

By the orthogonality of I(n) for different n, the expansion (2.9) is, in fact, an or-
thogonal expansion in L2(F (w,p)

s,t ).
An important consequence is that the following representation theorem for F(s)-

martingale can be obtained:

Theorem 2.2. Every square-integrable F(s) = {F (w,p)
s,t : t ≥ s}-martingale M =

(Mt)t≥s can be represented in the form

Mt = E[Ms] +
∫ t

s

∫

X̂

Φ(τ, x)M(dτ, dx)

= E[Ms] +
d∑

i=1

∫ t

s

Φi(τ)dwi(τ) +
∫ t

s

∫

X

Ψ(τ, x)Ñp(dτ, dx) (2.10)

by the uniquely determined predictable integrands Φ = (Φi,Ψ).

This result in the case of p = 0, i.e. the case of Wiener process, is now well-known
as Itô’s representation theorem.

The Clark-Ocone formula, which is concerned with the integrand Φi(τ) in (2.10),
can also be obtained from the expansion (2.9), Cf. [Wa].

6The only difference is that the Poisson point process p is a little bit restricted in [It 6]; in our case

it is completely general.
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Following Tsirelson (cf. [T 1], [T 2], [T 3]) we call a family {Fs,t}0≤s≤t<∞ of sub
σ-fields of F a noise if it satisfies Ft,t = {∅,Ω} module P -null set, Fr,t = Fr,s ⊗ Fs,t

for r ≤ s ≤ t, and for h > 0, Fs,t and Fs+h,t+h are isomorphic under a measure
preserving transformation Th on (Ω,F). Thus, {F (w,p)

s,t } is a typical example of noise.

Tsirelson defined a noise linear (linearizable, classical or white) if it is given as {F (w,p)
s,t }

by some Wiener process w and Poisson point process p. Thus, if l = (l(t))t≥0 is a
time homogeneous Lévy process on Rd, i.e. a right-continuous process with stationary
independent increments, then

F l
s,t = σ[l(v)− l(u); s ≤ u ≤ v ≤ t]

defines a noise {F (l)
s,t}. By Lévy–Itô’s decomposition theorem we see that F (l)

s,t = F (w,p)
s,t

by a Wiener process and a Poisson point proccess on Rd \ {0} so that F (l)
s,t is a linear

noise.
Given a noise, Tsirelson introduced an important notion called the spectrum of noise.

Let C[0,∞) be the space of all compact subsets in [0,∞) endowed with the Hausdorff
metric and Cfinite be its subspace formed of all finite subsets (including the empty set).
By an elementary set B, we mean a finite disjoint union of compact intervals in [0,∞) :
B =

⋃m
i=1[ui, vi]. Set FB = Fu1,v1 ∨ Fu2,v2 ∨ · · · ∨ Fum,vm .

Let N = {Fs,t} be a given noise. Then, for every f ∈ L2(F0,∞) with ‖f‖L2 = 1,
there exists a unique Borel probability µf on C[0,∞) with the property

µf

({
F ∈ C[0,∞);F ⊂ B

})
= E[E(f |FB)2].

µf is called the spectral measure of the noise {Fs,t} with respect to f .
In the case of the noise {F (w,p)

s,t }, µf can be obtained by the chaos expansion formula
(2.9) for f ∈ L2(F0,∞) with ‖f‖L2(F0,∞) = 1. In this case, µf has its full measure on
Cfinite such that µf{∅} = E[f ]2, and letting Sm = {a1, a2, . . . , am} ∈ Cfinite, 0 ≤ a1 <

· · · < am < ∞,

µf{Sm ∈ dt1dt2 . . . dtm}

=
[ ∫

X̂

· · ·
∫

X̂

|f (m)(t1, . . . , tm;x1, . . . , xm)|2n̂(dx1) . . . n̂(dxm)
]
dt1 . . . dtm,

m = 1, 2, . . . .

Tsirelson obtained the following important fact: A noise {Fs,t} is linear if and only
if the spectral measure µf associated with f ∈ L2(F0,∞) such that E[f2] = 1 has its full
measure on Cfinite for every f , cf [T 2] or [T 3].
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