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Preface

This book consists of two independent parts, each of which has its own list of
references.

Part I is Boolean valued analysis. Most of the content of this part was
discussed in my courses in the spring semester of 1974 at the University of
Illinois and the summer semester of 1975 at the Universität Heidelberg.

I appreciate the interest shown by my colleagues and I have profited from
discussions with them and from information and advice that they have pro-
vided. In particular I want to recognize the assistance of Joseph Doob, Peter
Loeb, Heinrich Lotz, Earl Berkson and especially David Berg for his instructive
discussion of Hilbert spaces.

Part II is titled “A conservative extension of Peano Arithmetic”. The content
is a revision of my lecture notes for a course offered in the fall semester of 1972
at the University of Illinois. The revision was used in a course that I offered in
the summer semester of 1975 at the Universität Heidelberg. I started this work
in the course of correspondence with Georg Kreisel. I have profited from his
correspondence. The original lecture notes were prepared with the assistance of
Mariko Yasugi, and editorial assistance was provided by my colleague Wilson
Zaring. Mr. Mamoru Kurata and Mr. Susumu Hayasi have read the proofs of
Part I and Part II respectively.

This book was written at the suggestion of my teacher Professor S. Iyanaga.
I also received encouragement from Professor Gödel and I express my deep
appreciation to him and to all who contributed.

Urbana
September, 1976

Gaisi Takeuti
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Introduction

Mathematical logic is reflection on mathematics. More specifically it is re-
flection on such questions as, What is logical validity? What is effective cal-
culability? What is a set? What are the basic principles of the universe of
sets. Apart from reflecting on these questions themselves, and proving relevant
metatheorems, one also wants to know the chances of an effective use of various
logical metatheorems in specific branches of mathematics. For example, one
might say that Abraham Robinson’s non-standard analysis answers the ques-
tion of how the completeness theorem can be put to good use in analysis, or
that Ax-Kochen theory answers the same question for the theory of ultra prod-
ucts. This book offers two additional examples of such applications of logical
metatheorems in specific branches of mathematics.

Part I is devoted to Boolean valued analysis, that is, it is devoted to an
application of Scott-Solovay’s Boolean valued models of set theory to analysis.
Our aim is to establish basic relation between elementary notion in Boolean
valued models and analysis.

In Chapter 1, we consider complete Boolean algebras of projections in Hilbert
space. Although the algebra of all projections (with their familiar operations)
in a Hilbert space does not form a Boolean algebra, many complete Boolean
algebras are embedded there.

Let B be a complete Boolean algebra, let A be a self-adjoint operator with

spectral decomposition A =

∫
λdEλ. The operator A is said to be in (B) if

Eλ ∈ B for every λ. If {Aα}α is a set of pairwise commutable self-adjoint
operators, then there exists a complete Boolean algebra B of projections, such
that Aα is in (B) for every α. The Boolean valued model of such a complete
Boolean algebra B of projections has interesting interpretations in analysis. For
example, the real numbers in such a model are exactly the self-adjoint operators
in (B) and real number addition, multiplication and order correspond to the
addition, multiplication, and order of self-adjoint operators.

The convergence of reals in the model also has a close relation with the
convergence of self adjoint operators in the strong topology.

In chapter 2, we consider Boolean valued analysis using a measure algebra
which is originally considered by Scott. Reals in this model correspond to
measurable functions. We discuss the interpretations of Baire functions, Borel
sets, differentiation, integration and the Baire category theorem in the model.

In Part II, we discuss a conservative extension of Peano arithmetic, i.e., an
application of Gentzen’s cut elimination theorem. Here we take a very weak
system of arithmetic with higher type and develop classical analysis in it. The
nature of the work is essentially expository. There are many similar works
by H. Weyl, G. Kreisel, P. Lorenzen, K. Schütte and many others. We place
emphasis on the following points.

1. We take a simple system whose proof-theoretic nature is very clear. The
cut elimination theorem implies that the system is a conservative exten-
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sion of Peano arithmetic, i.e., every arithmetical statement proved in the
system is a theorem of Peano’s arithmetic.

2. We are interested in classical logic and classical analysis. In particular
we are interested in classical analytic number theory. For this reason, we
devote special attention to the development of the theory of functions of
a complex variable.

From this, one can conclude that an arithmetical statement proved by the
method of classical analytic number theory is a theorem of Peano’s arithmetic.

Since we started this work in the course of correspondence with Kreisel,
let us discuss his work on the subject. In his earlier work (part II [3], [4],
[5], pp. 168–172, [12], [16]), Kreisel simply transcribed proofs in analysis into
the language of arithmetic with free function variables, by approximating the
individual functions in analysis, especially analytic number theory, by primitive
recursive functions on Q. In the late fifties (part II [9], [10], [11], [13], see also
[6] pp. 327–328, 361–362, [7], very readable [8], [15], [17], [18], [19]) he switched
to an abstract language, i.e. a language with symbols for higher types but with
weak existential axioms. However his main interest was not in conservative
extension over Peano’s arithmetic, but over the first few levels of the ramified
hierarchy. In his lecture (unpublished and unavailable to us), he went back to
the old stuff on analytic number theory to show that the latter was conservative
over primitive recursive arithmetic.
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Boolean Valued Analysis
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In 1963, Paul J. Cohen introduced the notion of forcing and proved many
important independency results in set theory. In 1966, D. Scott and R. Solovay
reformulated the theory of forcing in terms of Boolean valued models. (A similar
idea was developed by Vopenka [12], [13].) We propose to apply the theory of
Boolean valued models to analysis. We will introduce the idea of a Boolean
valued model but without much explanation. However, the theory is easy to
understand if one does several exercises after the basic properties of the model
are stated. We will assume the basic properties of self-adjoint operators and
their spectral decompositions.

D. Scott not only started Boolean valued models of set theory, with Solovay,
but also introduced Boolean valued analysis. His choice of complete Boolean
algebras was measure algebras. We will revisit Scott’s Boolean valued analysis
in Chapter 2.

The idea of Boolean valued models goes back to Church [4] and Rasiowa and
Sikorski [8]. However it is fair to say that the success of Scott and Solovay’s
work has encouraged many similar developments and applications.





Chapter 1

Boolean Valued Analysis
Using Projection Algebras

1.1 Hilbert space

A bounded operator P , of a Hilbert space, is called a projection if P is self-
adjoint and P 2 = P . We will use the symbol I to denote the identity operator
i.e. Ix = x and 0 to denote an operator defined by 0 · x = 0.

A set B of projections is called a Boolean algebra of projections, if it satisfies
the following conditions.

1. Both I and 0 are members of B and members of B are pairwise com-
mutable.

2. If P1 and P2 are members of B, so are P1 ∨ P2, P1 ∧ P2, and ¬P1, where
P1 ∨ P2 = P1 + P2 − P1 · P2, PI ∧ P2 = P1 · P2, and ¬P1 = I − P1.

A Boolean algebra B of projections is said to be complete if B is not only
complete as a Boolean algebra but also satisfies the following condition. If
P = sup

α
Pα, then the range of P , denoted by R(P ), is the closure of the linear

space spanned by
∪
α

R(Pα).

From now on, let B be a complete Boolean algebra of projections. Let A

be a self-adjoint operator and let A =

∫
λdEλ be its spectral decomposition.

Then A is said to be in (B) if for every real λ, Eλ is a member of B.

Let A and B be self-adjoint and let A =

∫
λdEλ and B =

∫
λdE′

λ be their

spectral decompositions. Then A and B are said to be commutable if for every
pair λ, λ′ of reals

Eλ · E′
λ′ = E′

λ′ · Eλ.

7
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If A and B are bounded, then the commutativity of A and B is equivalent to
A ·B = B ·A.

The following single fact is very useful in our work and will be used without
mention.

Lemma 1.1.1. If {Aα} be a set of self-adjoint, pairwise commutable operators,
then there exists a complete Boolean algebra of projections such that for every
α, Aα is in (B).

Let A and B be commutable self-adjoint operators. It is usual to define
A+B as the operator satisfying the conditions

D(A+B) = D(A) ∩ D(B) and

∀x ∈ D(A+B) (A+B)x = Ax+Bx,

where D(A) denotes the domain of A. The operator A+B, defined in this way,
has a unique closed extension. For our purposes we define A + B to be this
unique closed extension. The operator A + B is also self-adjoint. In the same
way, A · B is defined to be the unique closed extension of the operator which
maps x, with x ∈ D(B) and Bx ∈ D(A), to ABx. The operator A · B is also
self-adjoint and A · B = B · A. Because of this definition, there is a possibility
that A + B and/or A · B is defined on the whole Hilbert space, and therefore
bounded, even if A and B are unbounded. In general, if the result of an operator
0(A,B) is not closed but has a unique closed extension, we define 0(A,B) to be
the unique closed extension of the result.

An operator N is said to be normal, if N = A + iB where A and B are
self-adjoint and commutable. Also N∗ = A− iB and NN∗ = N∗N = A2 +B2.
Furthermore, N is said to be in (B), if A and B are in (B). We define |N | to be√
A2 +B2. The operator |N | is self-adjoint.
Let A and B be self-adjoint and commutable. Then A ≤ B if and only if for

every x ∈ D(A) ∩ D(B), (Ax, x) ≤ (Bx, x).

1.2 The model V (B)

In this section, we summarize the necessary back ground about the Boolean
valued model V (B) of set theory. For detail, see §13. and §16. in [10], though
+, ·,−,Π,Σ are used there as Boolean operations in the place of ∨,∧,¬, inf, sup,
and O and I are used in the place of 0 and I.

First we shall give a rough idea of V (B). Let D be a domain. A set of
members in D is decided by assigning true or false to x ∈ A for every member
x in D. A B-valued set of members in D is decided by assigning any element
P in B to x ∈ A for every member x in D. We write Jx ∈ AK = P if the
assigned value of x ∈ A is P . The symbol ‘Jx ∈ AK = P ’ is read as ‘x ∈ A
holds with probability P ’. However, ‘Jx ∈ AK = I’ is read as ‘x ∈ A holds’ and
‘Jx ∈ AK = 0’ is read as ‘x ∈ A does not hold’.

The universe V of all sets is obtained by starting with the empty set and by
creating sets of sets, sets of sets of sets etc. The Boolean valued universe V (B)



1.2. THE MODEL V (B) 9

is obtained by starting with the empty set and by creating Boolean valued sets
of Boolean valued sets, Boolean valued sets of Boolean valued sets of Boolean
valued sets etc. By interpreting true by I and false by 0, there exists a natural
embedding, denoted by

√
, of V into V (B) i.e.

√
: V → V (B).

Let a ∈ V . The corresponding element in V (B) is denoted by
√

a.
Formally, we shall carry this out as follows. Let B be a complete Boolean al-

gebra (of projections). For an ordinal α, we define V
(B)
a by transfinite induction

as follows:

V
(B)
0 = ϕ

V (B)
α = {u|u : D(u) → B and D(u) ⊆

∪
ξ<α

V
(B)
ξ }

and V (B) =
∪

α∈On

V (B)
α ,

where On is the class of all ordinal numbers.
It is easy to see that

1) if α is a limit, then V
(B)
α =

∪
ξ<α

V
(B)
ξ ,

2) V
(B)
α+1 = {u|u : D(u) → B and D(u) ⊆ V

(B)
α }, and

3) if α ≤ β, then V
(B)
α ⊆ V

(B)
β .

For u, v ∈ V (B), Ju ∈ vK and Ju = vK are defined as functions from
V (B) × V (B) to B satisfying the following properties.

1. Ju ∈ vK = sup
y∈D(v)

(v(y) ∧ Ju = yK)
2. Ju = vK = inf

x∈D(u)
(u(x) ⇒ Jx ∈ vK) ∧ inf

y∈D(v)
(v(y) ⇒ Jy ∈ uK)

where P1 ⇒ P2 is ¬P1 ∨ P2 i.e.

(I − P1) + P2 − (I − P1) · P2 = I − P1 + P1 · P2.

In the following, we also use ∧,∨,¬,⇒ as logical connections. Let φ be a
formula in set theory, that is, let φ be obtained by applying logical symbols to
atomic formulas of the form u ∈ v or u = v. If φ does not contain any free
variable and all the constants in φ are members in V (B), we define JφK by the
following rules.

1. J¬φK = ¬JφK = I− JφK
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2. Jφ1 ∨ φ2K = Jφ1K ∨ Jφ2K = Jφ1K + Jφ2K − Jφ1K · Jφ2K
3. Jφ1 ∧ φ2K = Jφ1K ∧ Jφ2K = Jφ1K · Jφ2K
4. J∀xφ(x)K = inf

u∈V (B)
Jφ(u)K

5. J∃xφ(x)K = sup
u∈V (B)

Jφ(u)K
From this definition we have the following basic properties.

1. Ju = uK = I

2. Ju = vK = Jv = uK
3. Ju1 = u2K · Ju2 = u3K ≤ Ju1 = u3K
4. Ju = vK · Jφ(u)K ≤ Jφ(v)K
5. Ju = vK = J∀x(x ∈ u iff x ∈ v)K.
Since all the statements in analysis can be expressed in the language of set

theory, we can assign a value in B to any statement in analysis by J K.
Let M = R(P ). Roughly the meaning of JφK = P is that φ holds if we

restrict our Boolean algebra B to a subspace M. In another words, the meaning
of JφK = P is that φ does not hold if we restrict our Boolean algebra B to a
subspace M⊥.

The theorem, which is the base of our work, is the following.

Theorem 1.2.1. The Boolean valued universe V (B) is a model of ZF set theory
with the axiom of choice. This set theory we denote by ZFC. In other words,
if φ is a theorem of ZFC, then JφK = I i.e. φ holds in V (B).

Since every theorem in contemporary mathematics is a theorem in ZFC, we
can express this in the following way. If φ is a theorem, then φ holds in V (B).
Moreover, from the proof of the Theorem 1.2.1, we have the following corollary.

Corollary 1.2.2. If φ is a theorem, then ‘φ holds in V (B)’ is also a theorem.

Since conditional is often used in mathematics, the following equivalence is
useful in practice

Jφ1 ⇒ φ2K = (Jφ1K ⇒ Jφ2K) and

(P1 ⇒ P2) = I iff P1 ≤ P2.

The following lemma which is Theorem 13.13. in [10] is also useful.

Lemma 1.2.3. For u ∈ V (B),

1. J∃x ∈ uφ(x)K = sup
x∈D(u)

u(x) · Jφ(x)K
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2. J∀x ∈ uφ(x)K = inf
x∈D(u)

(u(x) ⇒ Jφ(x)K).
Now we define the embedding

√
: V → V (B) precisely, by transfinite induc-

tion as follows.
For y ∈ V ,

√

y= {⟨
√

x, I⟩|x ∈ y}

i.e.

√

y is a constant function such that D(

√

y) = {
√

x |x ∈ y} and its value is
constantly I.

Obviously the following proposition holds.

Proposition 1.2.4 (Theorem 13.17. in [10]). For x, y ∈ V ,

1. x ∈ y iff J√x∈√

yK = I and

x ̸∈ y iff J√x∈√

yK = 0,

2. x = y iff J√x=√

yK = I and

x ̸= y iff J√x=√

yK = 0.

In order to develop analysis in set theory, first the natural numbers are
constructed from ϕ, which is also denoted by 0, the integers are constructed
as pairs of natural numbers, the rational numbers are constructed as pairs of
integers, and finally, the real numbers are constructed by Dedekind’s cuts of
rational numbers. Since V (B) satisfies ZFC, we adopt the same definition of
the natural numbers, integers, rational numbers and real numbers so that all
the theorems in analysis also hold in V (B). Let us denote the set of all natural
numbers by ω, the set of all rational numbers by Q, the set of all real numbers
by R and the set of all complex numbers by C. The first natural question is what
are ω,Q,R, and C in V (B). First two are answered as follows. (cf. pp. 129–130
in [10]).

1. Let n be a natural number. Then n in V (B) is
√

n. More precisely there exists
a formula φ(x) which define n in the sense that ∃!xφ(x)∧φ(n) is provable.

Then ∃!xφ(x)∧φ(
√

n) holds in V (B). In particular 0, in V (B), is

√

0, that is,√

ϕ is the empty set in V (B). In V (B), ω is
√

ω.

Moreover
√

n +
√

m and
√

n ·
√

m, in V (B), are (n +m)
√

and (n ·m)
√

respectively.

Similarly
√

n≤
√

m iff n ≤ m.

2. Let r be a rational number. Then r, in V (B), is
√

r . Moreover
√

r1 +
√

r2=

(r1 + r2)
√

and
√

r1 ·
√

r2= (r1 · r2)
√
, hold in V (B). And,

√

r1≤
√

r2 iff r1 ≤ r2.
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Finally Q, in V (B), is

√

Q. We often write n, r, ω and Q in the place of
√

n,
√

r ,
√

ω, and

√

Q. Note, in passing, that R, in V (B), may not be R. In many

cases, we can prove that J√R= RK = 0.

A subset {Pα} of B is called a partition of unity if the following conditions
are satisfied.

1. If α ̸= β, then Pα · Pβ = 0.

2. I =
∑
α

Pα = sup
α
Pα,

where
∑
α

Pα is defined in the strong topology. Let {Pα} be a partition of unity

and let {uα} be a subset of V (B). Then there exists an element u of V (B) such
that

∀α Ju = uαK ≥ Pα.

Moreover if there exists another u′ such that ∀α(Ju′ = uαK ≥ Pα), then Ju =

u′K = I, i.e. u = u′ holds in V (B). We denote this u by
∑
α

uαPα which is

determined uniquely in the sense of equality in V (B). (cf. Theorem 6.9. and
Corollary 16.3. in [10]).

Proposition 1.2.5. Let u =
∑
α

uαPα. Then

Jφ(u)K =∑
α

Jφ(uα)K · Pα.

Proof. Since u = uα ∧ φ(uα) ⇒ φ(u),

Ju = uαK · Jφ(uα)K ≤ Jφ(u)K.
So Jφ(uα)K · Pα = Ju = uαK · Jφ(uα)K · Pα ≤ Jφ(u)K · Pα.

In the same way,

Jφ(u)K · Pα = Ju = uαK · Jφ(u)K · Pα ≤ Jφ(uα)K · Pα.

Therefore Jφ(u)K =∑
α

Jφ(u)K · Pα =
∑
α

Jφ(uα)K · Pα.

Proposition 1.2.6. Let u =
∑
α

uαPα and ∀α, β(α ̸= β ⇒ Juα = uβK = 0).

Then
Pα = Ju = uαK.
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Proof. Ju = uαK =∑
β

Juβ = uαK · Pβ = Pα.

Proposition 1.2.7. Let u =
∑
α

uαPα. Then

Jφ(u)K =∑
α

Ju = uαK · Jφ(uα)K.
Proof. ∑

α

Ju = uαK · Jφ(uα)K ≥∑
α

Jφ(uα)K · Pα = Jφ(u)K.
On the other hand ∑

α

Ju = uαK · Jφ(uα)K ≤ Jφ(u)K.

We call u ∈ V (B) a natural number in V (B), if Ju ∈ ωK = I. Now we would

like to see what the natural numbers in V (B) are. Let Ju ∈ ωK = Ju ∈
√

ωK = I.
Then

Ju ∈
√

ωK = sup

x∈D(

√
ω)

ω̌(x) · Ju = xK
= sup

n∈ω
Ju =

√

nK.
Let Pn = Ju =

√

nK. It is easy to see that {Pn} is a partition of unity and

u =
∑
n

√

n Pn =
∑
n

n · Pn.

There might be many 0’s among the Pn’s. Usually we take off the 0’s and write

u =
∑
i

ni · Pi,

where i ranges over a finite or infinite subset of ω.

Let {Pi} be a partition of unity, let {ni} be a subset of ω and let u =
∑
i

niPi.

Then it is easily seen that Ju ∈ ωK = I. Therefore all natural numbers in V (B)

are expressed in the form
∑
i

niPi. This form is very convenient for the following

reason. Let {Pi} and {P ′
j} be two partitions of unity. Then {Pi · P ′

j}ij is also
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a partition of unity. Let u =
∑
i

niPi and v =
∑
j

mjP
′
j . Then the following

properties are easily checked.

u+ v =
∑
i,j

(ni +mj)Pi · P ′
j

u · v =
∑
i,j

(ni ·mj)Pi · P ′
j

Ju < vK = sup{Pi · P ′
j |ni < mj}.

Let u ∈ V (B). Then u is called a rational number in V (B), if Ju ∈ QK = I. Since
Q is obtained from ω by a simple construction, what we proved about ω is also
true for Q, that is, the following properties hold.

1. All rational numbers in V (B) are those of the form
∑
i

riPi where {Pi} is

a partition of unity and {ri} is a subset of Q.

2. Let u =
∑

riPi and v =
∑
j

r′jP
′
j be two rational numbers in V (B). Then

u+ v =
∑
i,j

(ri + r′j)Pi · P ′
j

u · v =
∑
i,j

(ri · r′j) · Pi · P ′
j

Ju ≤ vK = sup{Pi · P ′
j |ri ≤ r′j}Ju < vK = sup{Pi · P ′
j |ri < r′j}.

Theorem 1.2.8 (The Maximum Principle, Theorem 16.2. in [10]). Let φ be a
formula. Then there exists a u ∈ V (B) such that

Jφ(u)K = J∃xφ(x)K.
Since J∃xφ(x)K = sup

v∈V (B)

Jφ(v)K, the meaning of the theorem is that there

exists a u which maximizes the value of Jφ(u)K.
Let φ(x) be a formula with only x as a free variable. Let v0 ∈ V (B) satisfyJφ(v0)K = I. Now consider a statement of the form ∀x(φ(x) ⇒ ψ(x)). SinceJ∀x(φ(x) ⇒ ψ(x))K = inf

u∈V (B)
Jφ(u) ⇒ ψ(u)K, we have to calculate Jφ(u) ⇒ ψ(u)K

for every u ∈ V (B) in order to calculate J∀x(φ(x) ⇒ ψ(x))K. Let u ∈ V (B) andJφ(u)K = P . Define u′ = u · P + v0 · (I − P ). It is easily seen that Jφ(u′)K = I
and Jψ(u′)K ≤ (Jφ(u)K ⇒ Jψ(u)K).
Therefore we have

J∀x(φ(x) ⇒ ψ(x))K = infJφ(u)K=I
Jψ(u)K.



1.3. REAL NUMBERS IN V (B) 15

In the same way, we have

J∃x(φ(x) ∧ ψ(x))K = supJφ(u)K=I

Jψ(u)K.
This justifies the following definition. We define the interpretation of {x|φ(x)}
with respect to V (B) to be {u ∈ V (B)|Jφ(u)K = I}, assuming that it is not empty.

The above discussion shows that the interpretation of important notions in
analysis is at the center of our work.

Remark. Let u ∈ V (B). Then the class {v ∈ V (B)|Ju = vK = I} is always a
proper class. This sometimes causes a technical inconvenience. In the following,
we always think that we have picked up a representative from an equivalent class
{v ∈ V (B)|Ju = vK = I}. Technically we use a set {v ∈ V (B)|v is of the lowest
rank with Ju = vK = I} to represent a proper class {v ∈ V (B)|Ju = vK = I}. In
this way, we can avoid the use of a uniform choice function.

1.3 Real numbers in V (B)

We define real numbers by Dedekind cuts. More precisely, by a real number
we mean a set of rational numbers which is the upper segment of a Dedekind
cut. If a is a real number and a corresponds to a rational number r, then we
include r in a, that is r is the smallest member of a. Thus ‘a is a real number’
is expressed by the following formula.

a ⊆ Q ∧ ∃s ∈ Q(s ∈ a) ∧ ∃s ∈ Q(s /∈ a) ∧ ∀s ∈ Q(s ∈ a ⇔ ∀t ∈ Q(s < t ⇒
t ∈ a))

We define R(B) to be the interpretation of R in V (B), i.e.

R(B) = {u ∈ V (B)|Ju is a realK = I}.

Let u ∈ R(B) and r ∈ Q. We define Pr to be Jr ∈ uK. Then the following is
easily checked.

1. inf
r∈Q

Pr = 0

2. sup
r∈Q

Pr = I

3. Pr = inf
r<s

Ps.

Let λ range over real numbers. Let Eλ = inf
λ<r

Pr. Then

1. inf
λ
Eλ = 0

2. sup
λ
Eλ = I

3. Eλ = inf
λ<µ

Eµ.
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This implies that {Eλ} is a resolution of the identity in (B). On the other hand,
let {Eλ} be a resolution of the identity in (B). Let Pr = Er for each rational
number r, and define u to be a function satisfying

D(u) = {ř|r ∈ Q} and u(ř) = Pr.

Then u ∈ R(B) is easily checked and the correspondence between R(B) and the
set of all resolutions of the identity in (B) is 1-1 onto. Since there is a 1-1 onto
correspondence between the set of all resolutions of the identity in (B) and the
set of all self-adjoint operators in (B), this establishes a 1-1 onto correspondence
between the set of all self-adjoint operators in (B) and R(B). From now on, we
express this relation by simply saying that the interpretation of a real number in
V (B) is a self-adjoint operator in (B). We are going to investigate the meaning
of addition, multiplication and ≤ for real numbers in V (B) as operations and a
relation for self-adjoint operators in (B).

For a ∈ R, ǎ ∈ R(B). Furthermore ǎ represents a resolution of the identity
{Eλ} such that Eλ = 0 if λ < a and Eλ = I if a ≤ λ. Therefore ǎ represents an
operator a · I i.e. a itself.

Though ω = ω̌ and Q = Q̌ hold, R = Ř does not hold in many Boolean
valued universes V (B). For example, take L2(−∞,∞), a self-adjoint operator
x·, and any complete Boolean algebra B such that x· is in (B). Let u ∈ R(B)

correspond to x·. In order to prove that JR = ŘK = 0, it suffices to show thatJu ∈ ŘK = 0 since Ju ∈ RK = I. Therefore it suffices to show that Jǎ = uK = 0
for every a ∈ R.

Jǎ = uK = inf
r∈Q

Jř ∈ ǎ⇔ ř ∈ uK and

Jř ∈ ǎ⇔ ř ∈ uK = { Jř ∈ uK if a ≤ r
I − Jř ∈ uK if r < a.

Let x· =
∫
λdEλ. Then Jř ∈ uK = Er. Therefore Jǎ = uK = Ea − Ea−0 = 0.

The meaning of this fact is that there are many reals in V (B) that can not be

expressed in the form
∑
α

aαPα, where {Pα} is a partition of unity and {aα} is

a subset of R. It also means that there are lots of self-adjoint operators in (B)
which are not of the form

∑
α

aαPα.

Let u and v be in R(B). Let A =

∫
λdEλ and B =

∫
λdE′

λ be corresponding

self-adjoint operators in (B) respectively. We proceed to see what the basic
operations for u and v correspond for A and B.

Proposition 1.3.1. The sum u+ v corresponds to A+B.

Proof. Let a and b be real numbers. The addition for the upper segment of
Dedekind cuts is defined in the following way.

r ∈ (a+ b) iff ∀s ∈ Q(r < s⇒ ∃t1, t2 ∈ Q(s = t1 + t2 ∧ t1 ∈ a ∧ t2 ∈ b))
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Interpreting this in V (B), u+ v corresponds to an operator

∫
λdE′′

λ such that

E′′
λ = inf

λ<λ′
sup
µ
Eµ · E′

λ′−µ.

It is easily checked that A+B =

∫
λdE′′

λ .

Proposition 1.3.2. The inequality u ≤ v holds in V (B) iff A ≤ B.

Proof. By definition, u ≤ v, for two reals defined by Dedekind cuts, if v ⊆ u.
So

Ju ≤ vK = I iff J∀r ∈ Q(r ∈ v ⇒ r ∈ u)K = I

iff ∀r ∈ Q((I − E′
r) + Er − Er · (I − E′

r) = I)

iff ∀r ∈ Q(E′
r = Er · E′

r)

iff ∀r ∈ Q(E′
r ≤ Er)

iff A ≤ B.

Proposition 1.3.3. Let A =

∫
λdEλ be in (B). Let P ∈ B and AP =

∫
λdE′

λ.

Then

E′
λ =

{
Eλ · P + (I − P ) if λ ≥ 0
Eλ · P otherwise.

Proof. Case 1) Px = x ∫
λdE′

λx =

∫
λdEλx = Ax

Case 2) Px = 0 ∫
λdE′

λx =

∫ ∞

0

λd(Ix) = 0.

Proposition 1.3.4. Let A =

∫
λdEλ and B =

∫
λdE′

λ be in (B) and let

P ∈ B. Then

AP ≤ BP iff E′
λP ≤ EλP for every λ.

Proof. AP ≤ BP iff Eλ · P + (I − P ) ≥ E′
λ · P + (I − P ) for each λ ≥ 0

and

EλP ≥ E′
λP iff EλP ≥ E′

λP for each λ < 0.
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Proposition 1.3.5. Ju ≤ vK ≥ P iff AP ≤ BP.

Proof.

Ju ≤ vK ≥ P iff J∀r ∈ Q(r ∈ v ⇒ r ∈ u)K ≥ P

iff ∀r ∈ Q((I − E′
r) + Er − (I − E′

r) · Er ≥ P )

iff ∀r ∈ Q((I − Er)(I − E′
r) + Er ≥ P )

(I − Er)(I − E′
r) + Er ≥ P ⇒ Er ≥ E′

rP

⇒ ErP ≥ E′
rP.

On the other hand

ErP ≥ E′
rP ⇒ (I − E′

r)P ≥ (I − Er)P

⇒ (I − Er)(I − E′
r)P ≥ (I − Er)P

⇒ (I − Er)(I − E′
r)P + ErP ≥ P.

Proposition 1.3.6. Ju = vK ≥ P iff AP = BP.

Proof. Immediate from Proposition 1.3.5.

Proposition 1.3.7. Let max(u, v) correspond to

∫
λdE′′

λ . Then E′′
λ = Eλ ·E′

λ

for every λ.

Proof. This is obvious from the proof of Proposition 1.3.2.

Definition 1.3.1. We define max(A,B) to be this

∫
λdE′′

λ .

Proposition 1.3.8. The Boolean complement −u corresponds to −A.

Proof. Let C correspond to −u. Then

Ju+ (−u) = 0K = I ⇒ A+ C = 0

⇒ C = −A.

Proposition 1.3.9.

J|u− v| ≤ ε̌K ≥ P iff |A−B| · P ≤ ε,

where ε is a positive real, and

|A−B| = max(A−B,B −A).
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Proof. |u− v| ≤ ε iff u ≤ v + ε ∧ v − ε ≤ u.
Therefore

J|u− v| ≤ ε̌K ≥ P iff AP ≤ BP + εP and BP − εP ≤ AP

iff |A−B| · P ≤ ε.

Definition 1.3.2. We define 0 < A by ∀λ ≤ 0(Eλ = 0). If A is bounded, then
0 < A is ‘A is positive definite’.

Proposition 1.3.10.

0 < u holds in V (B) iff 0 < A.

Proof.

J0 < uK = I iff J0 ≤ uK = I ∧ Ju < 0K = 0

iff 0 ≤ A ∧ J∃r ∈ Q(r ∈ 0̌ ∧ r ̸∈ u)K = I

iff 0 ≤ A ∧ sup
0≤r∈Q

(I − Er) = I

iff 0 ≤ A ∧ (I − E0) = I

iff 0 ≤ A ∧ E0 = 0

iff 0 < A.

From the properties of real numbers,

Ju < v ∨ u = v ∨ v < uK = I.

What does this mean for self-adjoint operators ? Let P1 = Ju < vK, P2 = Ju =
vK, and P3 = Jv < uK. Then {P1, P2, P3} is a partition of unity and we know
that A = AP1 +AP2 +AP3, B = BP1 +BP2 +BP3,

AP1 < BP1

AP2 = BP2, and

BP3 < AP3.

Let a be a non-negative real. Since |A| ≤ a is equivalent to ‘A is bounded’
and ∥A∥ ≤ a, it follows that ‘A is a bounded operator’ is equivalent to

∃a ∈ R(a > 0 ∧ J|u| ≤ ǎK = I)

where u corresponds to A.

Proposition 1.3.11. Let {Pα} be a partition of unity, let {uα} be a subset

of R(B) and let u =
∑
α

uαPα. If Aα corresponds to uα, then A =
∑
α

Aα · P

corresponds to u.
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Proof. Let v correspond to A. It suffices to show that Juα = vK ≥ Pα. That is,
Aα · Pα = A · Pα. But this is obvious.

Proposition 1.3.12. The product u · v corresponds to A ·B.

Proof. Let P1 = J0 < uK, P2 = J0 = uK, P3 = Ju < 0K, P ′
1 = J0 < vK, P ′

2 =J0 = vK, and P ′
3 = Jv < 0K. Then {PiP

′
j}i,j is a partition of the unity. Let uij

correspond to A ·PiP
′
j and vij correspond to B ·PiP

′
j . Then u =

∑
uijPiP

′
j , v =∑

vijPiP
′
j , A =

∑
ij

APiP
′
j , B =

∑
ij

BPiP
′
j , u · v =

∑
ij

(uijvij)PiP
′
j , and AB =∑

ij

ABPiP
′
j . It suffices to show that uijvij corresponds to (APiP

′
j) · (BPiP

′
j).

Therefore we assume that (0 < A or 0 = A or A < 0) and (0 < B or 0 = B or
B < 0). If 0 = A or 0 = B, then the theorem is obvious. If A < 0, then −A > 0.
So we may assume that A > 0 and B > 0 i.e. Ju > 0K = I and Jv > 0K = I. Let∫
λdE′′

λ correspond to u · v. If λ ≤ 0, then E′′
λ = 0 and if λ > 0, then

E′′
λ = inf

λ<µ
sup
ν>0

Eν · E′
µ/ν .

It is easily seen that

∫
λdE′′

λ corresponds to A ·B.

Let {Pi} and {P ′
j} be partitions of unity and let {ni} and {mj} be subsets

of ω. Then
∑
i

niPi ≤
∑
j

mjP
′
j iff ni ≤ mj for every i, j satisfying PiP

′
j > 0.

Proposition 1.3.13. Let u : ω → R hold in V (B), let u(̌i) correspond to Ai for
every i ∈ ω, and let v ∈ R(B) correspond to A. Then J lim

i→∞
u(i) = vK = I iff for

every ε > 0 there exists a natural number
∑
i

niPi in V (B) such that for every

natural number
∑
j

mjP
′
j in V (x) if

∑
i

niPi <
∑
j

mjP
′
j then

|A−
∑
j

AmjP
′
j | < ε.

Proof. J lim
i→∞

u(i) = vK = I

iff J∀ε ∈ Q(ε > 0 ⇒ ∃n ∈ ω∀m ∈ ω(m ≥ n⇒ |u(m)− v| < ε))K = I

iff ∀ε > 0∃
∑
i

niPiJ∀m ∈ ω(m ≥
∑
i

ňiPi ⇒ |u(m)− v| < ε̌)K = I

iff ∀ε > 0∃
∑
i

ňiPi∀
∑
j

m̌jP
′
j(
∑
i

ňiPi ≤
∑
j

m̌jP
′
j ⇒ J|u(∑

j

m̌jP
′
j)− v| <

εK = I).

Since u(
∑
i

ňiPi) =
∑
i

u(ňi)Pi holds in V
(B), J lim

i→∞
u(i) = vK = I



1.4. THE INTERPRETATION OF ELEMENTARY THEOREMS 21

iff ∀ε > 0∃
∑
i

ňiPi∀
∑
j

m̌jP
′
j(
∑
i

ňiPi ≤
∑
j

m̌jP
′
j ⇒ |A −

∑
i

AniPi| <

ε).

From what we have discussed, it is clear that complex numbers in V (B)

are normal operators in (B). If u corresponds to A + iB and A and B are
self-adjoint operators, then u (the conjugate of u) corresponds to A − iB and
|u| corresponds to

√
A2 +B2. The condition that u corresponds to a bounded

normal operator is that there exists a real number a such that |u| < ǎ holds
in V (B). The condition that u corresponds to a unitary operator in (B) is that
u belongs to the unit circle in V (B). We have a straightforward generalization
here for every property we have discussed for real numbers in V (B).

Remark. R in V (B) can be represented by R(B) × {I} i.e. a function whose
domain is R(B) and whose value is constantly I.

1.4 The interpretation of elementary theorems

By Corollary 1.2.2, “φ holds in V (B)” is also a theorem if φ is a theorem. This
is a machinery to produce another theorem from a theorem. As elementary ex-
ercises, we are going to see what kind of theorems we get by this method in very
simple cases. Namely we are going to produce theorems by interpreting the first
four most elementary theorems in classical analysis i.e. the Bolzano-Weierstrass
Theorem, the Intermediate Value Theorem, the Maximum Principle, and Rolle’s
Theorem in V (B).

First we shall state two general theorems. Let D ⊆ V (B). A function
g : D → V (B) is called extensional if

∀d, d′ ∈ D Jd = d′K ≤ Jg(d) = g(d′)K.
Let u ∈ V (B). Then u is said to be definite, if

∀d ∈ D(u) u(d) = I.

Proposition 1.4.1 (Theorem 16.8. in [10]). Let u, v ∈ V (B) be definite and let
φ : D(u) → D(v) be an extensional function. Then there exists an f ∈ V (B)

such that

Jf : u→ vK = I and ∀d ∈ D(u) Jf(d) = φ(d)K = I.

Let v̂ = {u|Ju ∈ vK = I} and v′ : v̂ → {I}, that is, v′ is a function whose value
is constantly I. Then Jv = v′K = I.

Proposition 1.4.2. Let u and v be definite and D = D(u). There is a 1-1
correspondence between f ’s satisfying

Jf : u→ vK = I
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and extensional maps φ : D → v̂. The correspondence is given by

∀d ∈ D Jf(d) = φ(d)K = I.

Proof. Proposition 1.4.1 shows how to find f from φ. In order to find φ from
f , take an arbitrary d from D. Then

Jf(d) ∈ vK = I.

There exists an element c ∈ v̂ such that Jf(d) = cK = I. If φ(d) = c, then
obviously φ is extensional and Jf(d) = φ(d)K = I.

Now we consider an interpretation of the Bolzano-Weierstrass Theorem.
Let A0, A1, . . . and B be pairwise commutable self-adjoint operators with

|Ai| ≤ B for every i. Let u0, u1, . . . , v correspond to A0, A1, . . . , B respectively.
Let B be a complete Boolean algebra such that A0, A1, . . . , B are in (B). Define
φ by φ : {ň|n ∈ ω} → R(B) and φ(ň) = un for each n. Then φ is extensional.
Therefore there exists a u such that Ju : ω → RK = I and

Ju(ň) = unK = I for each n.

It is easily seen that J∀n ∈ ω|u(n)| ≤ vK = I. Therefore there exists a cluster
point v0 ∈ R(B) of u(n), that is,

J|v0| ≤ v ∧ ∀ε ∈ Q(ε > 0 ⇒ ∀n ∈ ω∃m ∈ ωn ≤ m ∧ |v0 − u(m)| < ε)K = I.

By interpreting this, we have the following theorem.

Theorem 1.4.3. Let A0, A1, . . ., and B be pairwise commutable self-adjoint
operators with |Ai| ≤ B for every i. Then there exists a self-adjoint operator A
such that

1. A commutes with each Ai and B, and |A| ≤ B,

2. for every ε > 0 and every n, there exist {mj} and {Pj} such that

2.1. {Pj} is a partition of unity and each member of {Pj} commutes with each
Ai, A and B,

2.2. n ≤ mj for each j and

|A−
∑
j

AmjPj | < ε.

Let f(x) be a continuous function from R to R and let A be a self-adjoint
operator in (B). Obviously f(A) is also in (B). For every u ∈ R(B), define
φ(u) ∈ R(B) to correspond to f(A), where A correspond to u. We claim that φ
is extensional, that is,

Ju = vK ≤ Jφ(u) = φ(v)K for u, v ∈ R(B).
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Let A and B correspond to u and v respectively. Then it suffices to show that

AP = BP ⇒ f(A)P = f(B)P.

Let A =

∫
λdEλ and B =

∫
λdE′

λ. Since AP = BP , we have EλP = E′
λP

for every λ. Suppose x ∈ D(f(A)) ∩ D(f(B)) and x = Px. Then Eλx = E′
λx

for every λ.

f(A) · x =

∫
f(λ)dEλx =

∫
f(λ)dE′

λx = f(B) · x.

This proves our claim. Therefore φ determines a function in V (B). Let us denote
this function by f again i.e. Jf : R → RK = I and

Jf(u) = φ(u)K = I for every u ∈ R(B).

Now we are going to show that

Jf is continuousK = I i.e.J∀x ∈ R∀ε ∈ Q(ε > 0 ⇒ ∃δ ∈ Q(δ > 0 ∧
∀y ∈ R(|x− y| < δ ⊃ |f(x)− f(y)| < ε)))K = I.

Therefore it suffices to show that for every self-adjoint operator A and for every
ε > 0

J∃δ ∈ Q(δ > 0 ∧ ∀y ∈ R(|u− y| < δ ⊃ |f(u)− f(y)| < ε))K = I,

where u corresponds to A. There exists a partition {Pi} of unity and {ri},
{si} ⊆ Q such that ∑

i

riPi < A <
∑
i

siPi.

Since A =
∑
i

APi and riPi < APi < siPi, we may assume that r < A < s.

Take δ > 0 such that

∀x ∈ [r, s] ∀y(|x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε).

Let

A =

∫
λdEλ and B =

∫
λdE′

λ with |A−B| ≤ δ.

Then
A− δ ≤ B ≤ A+ δ.

Since the spectral decomposition of A− δ is

∫
λdEλ+δ,

Eλ+δ ≥ E′
λ ≥ Eλ−δ.
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Therefore ∫
f(λ)dEλ−δ ≤

∫
f(λ)dE′

λ ≤
∫
f(λ)dEλ+δ.

Now

f(A)− ε =

∫
f(λ− δ)dEλ−δ − ε

=

∫
(f(λ− δ)− ε)dEλ−δ

≤
∫
f(λ)dEλ−δ

and in the same way, ∫
f(λ)dEλ+δ ≤ f(A) + ε

So we have

f(A)− ε ≤ f(B) ≤ f(A) + ε.

Now we can interpret f(A) as follows.
The function f itself immediately induce a function

f̌ : Ř → Ř.

Since Ř is dense in R in V (B) and f̌ is uniformly continuous in any closed interval
[
∑
riPi,

∑
siPi], f can be uniquely extended to the whole of R in V (B). The

value of this extended function at A is f(A). Now we have an interpretation of
the intermediate value theorem.

Theorem 1.4.4. Let f(x) be continuous and A and B be mutually commutable
self-adjoint operators with A ≤ B. Let Y be a self-adjoint operator which com-
mutes with A and B and let f(A) ≤ Y ≤ f(B). Then there exists a self-adjoint
operator X such that X commutes with A,B and Y,A ≤ X ≤ B, and Y = f(X).

Proof. Let B be a complete Boolean algebra such that A,B, and Y are in (B).
Let u, v, t ∈ R(B) correspond to A,B, and Y respectively. In V (B)f is con-

tinuous on [u, v] and f(u) ≤ t ≤ f(v). Therefore there exists an s ∈ [u, v] such
that t = f(s). By interpreting this, we get the X in the theorem.

For the interpretation of the maximum principle, we use the following lemma.

Lemma 1.4.5 (Shoenfield’s Absoluteness Lemma). Let M0 and M1 be two
transitive models of ZFC with M0 ⊆ M1 and u1, . . . , un be reals in M0. If M0

has all countable ordinals and ϕ is a Σ1
2-formula, then M0 |= ϕ(u1, . . . , un) iff

M1 |= ϕ(u1, . . . , un).

By a Σ1
2-formula, we mean a formula of the form
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∃x ∈ R∀y ∈ Rψ(x, y, a1, . . . , an) where ψ is arithmetical. A formula of the form
∀x ∈ R∃y ∈ Rψ(x, y, a1, . . . , an) with an arithmetical ψ is called a Π1

2-formula.
The above lemma also holds if ϕ is a Π1

2-formula.
Shoenfield’s lemma is translated into the following form for Boolean valued

models. (Cf. Theorem 9. 37. in [10]).

Lemma 1.4.6 (Absoluteness Lemma for Boolean valued models). Let B0 ⊆ BI

and u1, . . . , un ∈ R(B0). If ϕ is Σ1
2 or Π1

2, then

Jϕ(u1, . . . , un)KB0 = Jϕ(u1, . . . , un)KB1 .

Here J KB0 is the value calculated with respect to V (B0) and J KB1 is the value
calculated with respect to V (B1).

Now, the next theorem is an interpretation of the maximum principle.

Theorem 1.4.7. ∗ Let A and B be pairwise commutable self-adjoint operators
and f(X) be continuous and A ≤ B. Let B be the smallest complete Boolean
algebra such that A and B are in (B). Then there exists a self-adjoint operator
X in (B) such that A ≤ X ≤ B and f(Y ) ≤ f(X) for every self-adjoint operator
Y which commutes A and B and satisfies A ≤ Y ≤ B.

Proof. Let u and v ∈ R(B) correspond to A and B respectively. Then f attains
the maximum in [u, v] in V (B). Let u0 be a point in [u, v] where f attains the
maximum and X ∈ R(B) correspond to u0.

Now let Y commute with A and B and satisfy A ≤ Y ≤ B. Let B1 be the
smallest complete Boolean algebra such that A,B, and Y are in (B1). Obviously
B ⊆ B1. Since a continuous function can be represented by a single number,
f can be considered as a real number. Let ϕ(u0, u, v, f) be the statement “f
attains the maximum at u0 in [u, v]”. Then by the Absoluteness Lemma, we
have Jϕ(u0, u, v, f)KB1 = Jϕ(u0, u, v, f)KB = I.

Let u1 correspond to Y . Then from Jϕ(u0, u, v, f)KB1 = I follows

Jf(u1) ≤ f(u0)KB1 = I.

Theorem 1.4.8. Let {Xα}, A, and B be pairwise commutable self-adjoint oper-
ators and f(X) be continuous and A ≤ Xα ≤ B. for every α. Let B be the small-
est complete Boolean algebra such that all Xα, A, and B are in (B). Then there
exists a self-adjoint operator X in (B) such that A ≤ X ≤ B, ∀α(f(Xα) ≤ f(X))
and for every B1 with B ⊆ B1 and for every Y in (B1) with A ≤ Y ≤ B and
∀α(f(Xα) ≤ f(Y )),

f(X) ≤ f(Y ).

∗Theorems 1.4.7 and 1.4.8 have been pointed out by E. Nelson. The main tool of his proof
is the spectral theorem.
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Proof. Let u0, v0, and wα correspond to A,B, and Xα respectively. Define w̃
by the following equations.

D(w̃) = the set of all wα,

and

w̃(wα) = I for every wα in D(w̃).

Then we have Jw̃ ⊆ [u0, v0]KB = I and J∃x ∈ [u0, v0](∀y ∈ w̃(f(y) ≤ f(x))∧∀z ∈
[u0, v0](∀y ∈ w̃(f(y) ≤ f(z)) ⇒ f(x) ≤ f(z))KB = I. Let u ∈ R(B) satisfyJu ∈ [u0, v0]KB = I and J∀y ∈ w̃(f(y) ≤ f(u)) ∧ ∀z ∈ [u0, v0](∀y ∈ w̃(f(y) ≤
f(z)) ⇒ f(u) ≤ f(z))KB = I, and X correspond to u.
Define

P1 = J∃x ∈ w̃∀y ∈ w̃(f(y) ≤ f(x))KB
and

P2 = J∀x ∈ w̃∃y ∈ w̃(f(x) < f(y))KB.
Then {P1, P2} is a partition of the unity. Therefore we may assume without
loss of the generality that either P1 = I or P2 = I holds.

Case 1) J∃x ∈ w̃∀y ∈ w̃(f(y) ≤ f(x))KB = I. There exists u ∈ R(B) such
that Ju ∈ w̃KB = I and J∀y ∈ w̃(f(y) ≤ f(u))KB = I. Therefore u must be

of the form
∑
α

wα · Pα where {Pα} is a partition of the unity in B. Let X be∑
α

Xα · Pα. For every Y in (B1) with A ≤ Y ≤ B and ∀α(f(Xα) ≤ f(Y )),

f(X) · Pα ≤ f(Xα) · Pα ≤ f(Y ) · Pα. Therefore we have f(X) ≤ f(Y ).
Case 2) J∀x ∈ w̃∃y ∈ w̃(f(x) < f(y))KB = I. Let a be {γ ∈ Q|∃y ∈ w̃(γ ≤

f(y))} in V (B). Obviously a is a subset of Q in V (B) and can be represented by
a real in V (B). Then there exists a u ∈ R(B) such that

Jf(u) = sup aKB = I and Ju ∈ [u0, v0]KB = I.

Now let B ⊆ B1, Y be in (B1), A ≤ Y ≤ B, and ∀α(f(Xα) ≤ f(Y )).
Since Jf(u) = sup aKB = I, we have by absoluteness Lemma

Jf(u) = sup aKB1 = I.

Let Jγ ∈ aKB1
= I and Z correspond to γ. Then there exists a partition of unity

{P ′
α} in B1 such that Z ≤

∑
α

f(Xα) · P ′
α.

Therefore Z ≤ f(Y ) i.e.

Jsup a ≤ f(y)KB1 = I

where y correspond to Y . Let X correspond to u. Then we have

Jf(u) ≤ f(y)KB1 = I and f(X) ≤ f(Y ).
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Now let f(x) be differentiable and f ′(x) be continuous. Let A be self-adjoint
and let u and v correspond to A and f ′(A) respectively. Then we are going to
show that Jf ′(u) = vK = I.

Without loss of generality, we may assume that there exist rational numbers r
and s such that

r < A < s.

By a routine interpretation, it suffices to show that for every ε > 0 there exists
a δ > 0 such that if 0 < |B −A| < δ, then∣∣∣∣f(B)− f(A)

B −A
− f ′(A)

∣∣∣∣ ≤ ε

where A and B are in (B). Take δ > 0 such that for every x ∈ [r, s] and for
every y, if 0 < |y − x| < δ, then∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ ≤ ε.

There exists a self-adjoint operator C =

∫
λdEλ and functions g(x) and h(x)

such that g and h are measurable with respect to {Eλ}, A =

∫
g(λ)dEλ, B =∫

h(λ)dEλ and 0 < |g(x)− h(x)| < δ almost everywhere with respect to {Eλ}.
Now∣∣∣∣f(B)− f(A)

B −A
− f ′(A)

∣∣∣∣ =

∣∣∣∣∫ (f(h(λ))− f(g(λ))

h(λ)− g(λ)
− f ′(g(λ))dEλ

)∣∣∣∣
≤

∫
εdEλ = ε.

Remark. We can express this fact as follows. The derivative of f(X) at A is
f ′(A). Without assuming the continuity of f ′(x), one can show the differentia-
bility of f(X) at A. However it is an open problem without the continuity of
f ′(x) that the derivative of f(X) at A is f ′(A).

In the same way as before, we have the following interpretation of Rolle’s
Theorem.

Theorem 1.4.9. Let f(x) be differentiable and f ′(x) be continuous and let
A and B be mutually commutable self-adjoint operator with A ≤ B. Then
there exists a self-adjoint operator X such that X commutes with A and B,
A ≤ X ≤ B and

f(B)− f(A) = (B −A)f ′(X).
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1.5 Miscellaneous interpretations

Let A be a normal operator in (B) and let λ0 be a complex number. Let

C(B) = {u ∈ V (B)|Ju is a complex numberK = I}

and let u ∈ C(B) correspond to A. Suppose Jλ̌0 − u = 0K = 0. Then

J 1

λ̌0 − u
existsK = I.

Let B ∈ C(B) correspond to
1

λ̌0 − u
. Then (λ0I − A) · B = I. Now suppose

that
1

λ0I −A
does not exist with positive probability i.e. Jλ̌0−u = 0K = P > 0.

This means that λ0P = AP . Let A = A1 + iA2 =

∫
λdEλ + i

∫
λdE′

λ and

λ0 = a+ ib, where a and b ∈ R. Then λ0P = AP implies
that

Eλ · P = 0 if λ < a

and

Eλ · P = P if a ≤ λ

that is,
Ea − Ea−0 ≥ P.

In the same way, we have E′
b − E′

b−0 ≥ P . This means that λ0 is a point
spectrum of A.

Next we consider the case that
1

λ0I −A
exists but is not bounded. This

means that for every ε > 0

J 1

|λ̌0 − u|
>

1

ε
K > 0 i.e. J|λ̌0 − u| < ε̌K > 0.

Since ε is arbitrarily small, this is equivalent to for every ε > 0,

J|ǎ− u1| ≤ ε̌K · J|b̌− u2| ≤ ε̌K > 0,

where u1, u2 ∈ R(B) and Ju = u1 + iu2K = I. Suppose

J|ǎ− u1| ≤ ε̌K · J|b̌− u2| ≤ ε̌K = P > 0.

Then

Jǎ− ε̌ ≤ u1 ≤ ǎ+ ε̌K ≥ P and

Jb̌− ε̌ ≤ u2 ≤ b̌+ ε̌K ≥ P.
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So

Eλ · P = 0 if λ < a− ε

and

Eλ · P = P if λ ≥ a+ ε

that is,

Ea+ε − Ea−ε−0 ≥ P.

In the same way E′
b+ε − Eb−ε−0 ≥ P . This means that a + bi is a continuous

spectrum of A.

Let A =

∫
λdEλ be in (B), let u ∈ R(B) correspond to A and let a, ε ∈ R

with ε > 0. If J|u−ǎ| ≤ εK > 0, then there exists a b ∈ σ(A) such that |b−a| ≤ ε,
where σ(A) is the spectrum of A. This can be seen as follows. J|u− ǎ| ≤ εK > 0
implies that Ja− ε ≤ u ≤ a+ εK > 0

Hence we have Ea+ε − Ea−ε−0 > 0. This implies ∃b ∈ σ(A)(b ∈ [a− ε, a+ ε]).
C is obtained from C by adding the point at the infinite. Let f(z) be a

function from C to C, let A be a normal operator and let σ(A) be its spectrum,
which may include the point at infinity. If f(z) is holomorphic in a neighborhood
of σ(A), and if u corresponds to A and v corresponds to f ′(A), then we can
repeat the argument of the last section and prove that

Jf is holomorphic at u and its derivative at u is vK = I.

That is, f(z) is holomorphic at A and the derivative of f(z) at A is f ′(A).

1.6 Convergence

In this section, we shall consider the relation between the convergence of reals
in V (B) and the convergence of the self-adjoint operators.

Theorem 1.6.1. Let A0, A1, . . . , A be pairwise commutable bounded self-adjoint
operators with M a uniform bound of ∥A0∥, ∥A1∥, . . . , ∥A∥. Furthermore letJu : ω → RK = I, let u(̌i) correspond to Ai for each i ∈ ω, and let v ∈ R(B)

correspond to A. If J lim
n→∞

u(n) = vK = I, then lim
n→∞

An = A in the strong

topology.

Proof. From J lim
n→∞

u(n) = vK = I it follows that for every ε > 0 there exists a

partition of unity {Pi} and {ni} such that for every {mi} with ∀i(mi ≥ ni)

∥A−
∑
i

AmiPi∥ <
ε

2
.
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Take an arbitrary x with ∥x∥ = 1. For every ε1 > 0, there exists a k such
that

∥x−
k∑

i=0

Pix∥ < ε1.

Let N = max(n0, n1, . . . , nk) and take any m ≥ N . Then let y = Ax −
k∑

i=0

AmPix−
∑
k<i

AniPix, u =
∑
k<i

AmPix and v =
∑
k<i

AniPix.

∥Ax−Amx∥2 = ∥y − u+ v∥2

≤ ∥y∥2 + ∥u∥2 + ∥v∥2 + 2∥y∥∥v∥+ 2∥y∥∥v∥+ 2∥u∥∥v∥.

Since ∥y∥ < ε

2
, it suffices to show that ∥u∥ and ∥v∥ go to 0 if ε1 goes to 0.

∥u∥ = ∥
∑
k<i

AmPix∥ ≤M∥
∑
k<i

Pix∥ < ε1M.

Since Ani and Pi are commutable,

∥v∥2 = ∥
∑
k<i

AniPix∥2 =
∑
k<i

∥AniPix∥2

≤ M2
∑
k<i

∥Pix∥2 =M2∥
∑
k<i

Pix∥2 < M2ε21.

Remark. The uniform boundedness of the ∥Ai∥ in Theorem 1.6.1 is necessary
as is easily seen in the following example.

Let {Pi} be a partition of unity with Pi > 0 for each i. Let x have the
property that ∀i(∥Pix∥ > 0); let ai = 1/∥Pix∥ and let Ai = a2iPi. Then for

every
∑
j

mjP
′
j ≥

∑
i

(i+ 1)Pi

∑
j

AmjP
′
j = 0

Since P ′
j · Pi > 0 implies mj ≥ i+ 1.

Hence J lim
n→∞

u(n) = 0K = I, where u(̌i) corresponds to Ai for every i. How-

ever (Aix, x) = ∥aiPix∥2 = 1 so Ai does not converge to 0 in the weak topology.
Also the converse of the theorem is not true as is easily seen from the following
example. Consider the Hilbert space L2[0, 1] and define P [α, β] to be the pro-
jection which restricts x to the domain [α, β]. Put P0 = I, P1 = P [0, 1/2], P2 =
[1/2, 1], P3 = P [0, 1/4], P4 = P [1/4, 1/2], P5 = P [1/2, 3/4], P6 = P [3/4, 1], . . ..
Then obviously P0, P1, P2, . . . → 0 in the strong topology. However it has a
subsequence in V (B)P0, P1 · P1 + P2 · P2, P3 · P3 + P4 · P4 + P5. P5 + P6 · P6, . . .
which converges to I in V (B). Therefore it does not converge to 0 in V (B).
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Proposition 1.6.2. Let A0, A1, . . . , A be pairwise commutable bounded self-
adjoint operators and A0, A1, A2, . . .→ A uniformly. If Ju : ω → RK = I, if u(̌i)
corresponds to Ai for each i ∈ ω and if v ∈ R(B) corresponds to A, then

J lim
n→∞

u(n) = vK = I.

Proof. Without loss of generality, we assume A = 0. For every ε > 0, take k
such that ∀i ≥ k(∥Ai∥ ≤ ε). Then

J∀i ∈ ω(i ≥ ǩ ⇒ |u(i)| ≤ ε̌)K
= inf

i≥k
J|u(̌i)| ≤ ε̌K = I.

Therefore J lim
n→∞

u(n) = 0K = I.

Remark. The converse of Proposition 1.6.2 is also false as is easily seen in the
following example. Let {Pi}i<ω be a partition of unity satisfying ∀i < ω(Pi > 0).
The sequence P0, P0 + P1, P0 + P1 + P2, . . . converges to I in V (B) but it does
not converge to I uniformly.

Proposition 1.6.3. Let A be a self-adjoint operator and let f0, f1, . . . , f be
Borel functions with f0, f1, . . .→ f uniformly on every compact subset of R. LetJu : ω → RK = I, v ∈ R(B) and u(0̌), u(1̌), . . . , v correspond to f0(A), f1(A), . . . , f(A)
respectively. Then J lim

n→∞
u(n) = vK = I.

Proof. Without loss of the generality, we assume f(x) = 0. Let A =

∫
λdEλ

and Pn = En − E−n. Take any ε > 0. Define ni such that

∀n ≥ ni ∀x ∈ [−i, i] |fn(x)| ≤ ε.

Let N = n1P1+n2(P2−P1)+n3(P3−P2)+ · · · . Then for every
∑
i

miP
′
i ≥ N ,

we have ∑
i

fmi(A)P
′
i =

∑
ij

fmi(A)P
′
i (Pj − Pj−1).

Let Bij = fmi(A)(Pj − Pj−1)P
′
i . Then ∥Bij∥ ≤ ε, i.e. −ε ≤ Bij ≤ ε. Therefore

−ε = −ε
∑
ij

P ′
i (Pj − Pj−1) ≤

∑
ij

BijP
′
i (Pj − Pj−1) ≤ ε

∑
ij

P ′
i (Pj − Pj−1) = ε.



32CHAPTER 1. BOOLEANVALUEDANALYSIS USING PROJECTION ALGEBRAS

1.7 Semi-group of self-adjoint operators

In this section, we shall discuss semi-groups of (possibly unbounded) self-adjoint
operators. In order to discuss the convergence of unbounded self-adjoint oper-
ators, we need several definitions.

Let P1 and P2 be projections. If P1 ≤ P2, then ∀x(∥P1x∥ ≤ ∥P2x∥). From
this it follows that P2x is a better approximation of x than P1x if P1 ≤ P2.

Definition 1.7.1. Let A =

∫
λdEλ. Then by a segment projection of A, we

mean a projection of the form EM − EN , where N ≤ M . For every x1, . . . , xn
and every ε > 0, there exists a segment projection P of A such that

∥Pxi − xi∥ < ε for every i.

If we choose Ay to be some xi, we have the following. For every x1, . . . , xn, y1, . . . , ym ∈
D(A), and every ε > 0, there exists a segment projection P of A such that

∥Pxi − xi∥ < ε for every i

and

∥APyj −Ayj∥ < ε for every j.

We also remark here that A is continuous i.e. bounded on the range of its
segment projection.

Lemma 1.7.1. Let A1, A2, . . . , B1, . . . , Bn be pairwise commutable self-adjoint
operators. For every x in D(B1) ∩ · · · ∩ D(Bn), and every ε > 0 there exists a

y in
∩
i

D(Ai) ∩
∩
j

D(Bj) such that

∥x− y∥ < ε and
∥Bjx−Bjy∥ < ε for every j.

Proof. There exists a segment projection P ′
i of Bi, for each i, such that

∥P ′
1 · · ·P ′

nx− x∥ < ε

2

and ∥BjP
′
1 · · ·P ′

nx− Bjx∥ <
ε

2
for every j. Let Mi = R(P ′

i ) and P
′
1 · · ·P ′

nx =

x0. Suppose we have defined x0, x1, . . . , xi such that x0, . . . , xi ∈ M1∩· · ·∩Mn

xk ∈ D(A1) ∩ · · · ∩ D(Ak) ∩M1 ∩ · · · ∩Mn (0 ≤ k ≤ i)

∥xk+1 − xk∥ <
ε

2k+2
(0 ≤ k ≤ i− 1)

and

∥Bjxk+1 −Bjxk∥ <
ε

2k+2
for every j (0 ≤ k ≤ i− 1).
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Then we define xi+1 as follows.
Since the Bj are continuous on Mk(1 ≤ k ≤ n) and xi ∈ Mk, take a

sufficient large segment projection Pi+1 of Ai+1 so that

∥Pi+1xi − xi∥ <
ε

2i+2

and

∥BjPi+1xi −Bjxi∥ <
ε

2i+2
for every j.

If xi+1 = Pi+1xi, then obviously

xi+1 ∈ D(A1) ∩ · · · ∩ D(Ai+1),

∥xi+1 − xi∥ <
ε

2i+2
,

and

∥Bjxi+1 −Bjxi∥ <
ε

2i+1
for every j.

If y = lim
i→∞

xi, then∥x−y∥ < ε, y ∈ R(Pi) ⊆ D(Ai), y ∈ Mi, and ∥Bjx−Bjy∥ <
ε for every j.

Definition 1.7.2. Let A,A1, A2, . . . be pairwise commutable self-adjoint op-
erators. Then A1, A2, . . . → A in the strong sense iff for every n and every

x ∈ D(A) ∩
∩
i≥n

D(Ai),

Anx,An+1x, . . .→ Ax.

If A,A1, A2, . . . are bounded, then ‘A1, A2, . . .→ A in the strong sense’ is equiv-
alent to ‘A1, A2, . . . → A in the strong topology’. If A,B1, B2, . . . are pairwise
commutable self-adjoint operators and B1, B2, . . . → 0 in the strong topology,
then A1, A2, . . .→ A in the strong sense, where Ai = A+Bi.

Lemma 1.7.2. Let A,B,A1, A2, . . . be pairwise commutable self-adjoint opera-
tors satisfying the following conditions:

1) ∀i Ai ≤ B

2) A1, A2, . . .→ A in the strong sense.
Then A ≤ B.

Proof. Let x ∈ D(A) ∩ D(B). By Lemma 1.7.1, there exists on xn ∈ D(A) ∩
D(B) ∩

∩
i

D(Ai) such that

1) ∥x− xn∥ <
1

2n

2) ∥Ax−Axn∥ <
1

2n
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3) ∥Bx−Bxn∥ <
1

2n
.

Fix a sequence x1, x2, . . . satisfying 1), 2), and 3). For every ε > 0, there exists
an xn such that

(Ax, x) ≤ (Axn, xn) +
ε

3
and

(Bxn, xn) ≤ (Bx, x) +
ε

3
.

Since A1, A2, . . .→ A and xn ∈ D(A) ∩
∩
i

D(Ai), there exists an Am such that

(Axn, xn) ≤ (Amxn, xn) +
ε

3
.

Hence we have (Ax, x) ≤ (Bx, x) + ε. Since ε is an arbitrary positive number,
we have

(Ax, x) ≤ (Bx, x).

Definition 1.7.3. A subset G of (0,∞) is called a regular semi-group if the
following conditions are satisfied.

1) x, y ∈ G⇒ x+ y ∈ G

2) x, y ∈ G, x < y ⇒ y − x ∈ G

3) x ∈ G⇒ x

2
∈ G.

The following theorem is very easily proved in the classical theory of func-
tional equations.

Theorem 1.7.3 (cf. [1]). Let G be a regular semi-group and let f : G → R
satisfy the following conditions:

1) ∀x, y ∈ G f(x+ y) = f(x) · f(y)

2) There exists an a > 0 such that f is bounded from above in (0, a) ∩G.

Then either ∀x ∈ Gf(x) = 0 or there exists a c ∈ R such that ∀x ∈ Gf(x) =
ecx.

The following theorem is an interpretation of Theorem 1.7.3.

Theorem 1.7.4. Let G be a regular semi-group and let {Ts|s ∈ G} be pairwise
commutable self-adjoint operators satisfying the following conditions:

1) ∀s, t ∈ G Ts+t = Ts · Tt.

2) If s1, s2, . . .→ t in G, then Ts1 , Ts2 , . . .→ Tt
in the strong sense.
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Then there exists a projection P and a self-adjoint operator A such that

1) ∀s ∈ G Ts = P · esA

2) P,A, and {Ts} are pairwise commutable.

Proof. First take any s0 ∈ G. Let B = max(I, Ts0). Then it is very easily seen
that

Tx ≤ B

if x is of the form
k

2n
s0 where k ≤ 2n. By Lemma 1.7.2,

∀x ∈ G ∩ (0, s0) Tx ≤ B.

Now let B be a complete Boolean algebra such that all Ts are in (B). Then Ǧ
is a regular semi-group in V (B). By Proposition 1.4.1, there exists an f ∈ V (B)

such that

1) Jf : Ǧ→ RK = I and

2) ∀s ∈ G Jf(š) = usK = I,

where us corresponds to Ts for every s ∈ G. Let v ∈ R(B) correspond to B.
Then it is easily proved thatJ∀s, t ∈ Ǧ f(s+ t) = f(s) · f(t)K = I, and

J∀s ∈ Ǧ ∩ (0, š0)f(s) ≤ vK = I.

By Theorem 1.7.3, we haveJ∀s ∈ Ǧ(f(s) = 0) or ∃a ∈ R∀s ∈ Ǧ(f(s) = esa)K = I.

Also J∀s ∈ Ǧ(f(s) = 0)K = Jf(š0) = 0K
where s0 is a member of G.

Let P = Jf(š0) ̸= 0K. Then
I − P = J∀s ∈ Ǧ(f(s) = 0)K and

J∃a ∈ R∀s ∈ Ǧ(f(s) = esa)K = P.

Choose u ∈ R(B) so that

J∀s ∈ Ǧ(f(s) = esu)K = P,

and let A correspond to u. If us = esu · P + 0 · (I − P ), then ∀s ∈ GJ(f(s) =
us)K = I, that is,

∀s ∈ G Ts = P · esA + 0 · (I − P ) = P · esA.
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1.8 Complete Boolean algebras of Banach spaces

A bounded linear operator P of a Banach space is called a projection if P 2 = P .
A Boolean algebra of projections in a Banach space and its completeness are
defined in the same way as before.

Definition 1.8.1. Let B be a complete Boolean algebra. The Boolean algebra
B satisfies the (ω, ω)-weak distributive law ((ω, ω)-WDL) iff for every family
{Pnm|n,m ∈ ω} ⊆ B

inf
n<ω

sup
m<ω

Pnm = sup
f∈ωω

inf
n<ω

sup
m≤f(n)

Pnm

The Boolean algebra B satisfies the (ωα, ωβ)-WDL iff for every family {Pξη|ξ <
ωα ∧ η < ωβ} ⊆ B,

inf
ξ<ωα

sup
η<ωβ

Pξη = sup
f∈ωβωα

inf
ξ<ωα

sup
η<f(ξ)

Pξη.

The following proposition is well-known in set theory (cf. Corollary 23. 37. in
[10]).

Theorem 1.8.1. The Boolean algebra B satisfies the (ωα, ωβ)-WDL iff Jcf((ωβ)
√
) >

(ωα)
√K = I in V (B), where cf is the character of cofinality.

For the meaning of the (ω, ω)-WDL, see Theorem 20. 4. in [10].

Theorem 1.8.2. Let B be a complete Boolean algebra of projections in a Banach
space. Then B satisfies the (ω, ω)-WDL.

Proof. It suffices to show that

inf
n<ω

sup
m<ω

Pnm ≤ sup
fεωω

inf
n<ω

sup
m≤f(n)

Pnm

for {Pnm|n < ω ∧m < ω} ⊆ B.
Take any P in B for which

1) 0 < P ≤ inf
n<ω

sup
m<ω

Pnm.

We want to show that

P · sup
fεωω

inf
n<ω

sup
m≤f(n)

Pnm > 0.

There exists an x such that

∥x∥ = 1 ∧ x = Px.

By virtue of 1), if n1 is sufficiently large, then x and ( sup
m≤n1

P1m) · x are very

close. So there exists an n1 such that

∥x− x1∥ ≤ 1

3
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where x1 = ( sup
m≤n1

P1m) · x. In the same way, there exist n2, . . . , nk such that

∥xi−1 − xi∥ <
1

3i
(2 ≤ i ≤ k)

where xi = ( sup
m≤ni

Pim) · xi−1. Let x0 = lim
n→∞

xn. ∥x0∥ >
1

2
. Since P and Pnm’s

are pairwise commutable, P · x0 = x0. If f(k) = nk, then

( inf
n<ω

sup
m≤f(n)

Pnm) · x0 = x0.

Therefore
P · inf

n<ω
sup

m≤f(n)

Pnm > 0.

Theorem 1.8.3. Let B be a complete Boolean algebra of projections in a Banach
space and let cf(ωβ) > ω. Then B satisfies the (ωα, ωβ)-WDL.

Proof. Let P and Pξη’s be in B. We want to show that for every P with

0 < P ≤ inf
ξ<ωa

sup
η<ωβ

Pξη,

0 < P · sup
f∈ωβωa

inf
ξ<ωa

sup
η<f(ξ)

Pξη.

Let x ̸= 0 and Px = x. Fix ξ < ωα. Since ( sup
η<ωβ

Pξη) ·x = x, x is a cluster point

of the set {(sup
η<θ

Pξη) · x|θ < ωβ}. Therefore there exists an ω-sequence

θ0 ≤ θ1 ≤ θ2 ≤ · · · < ωβ

such that ( sup
η<θi

Pξη) · x → x if i → ω. If f(ξ) = sup
i<ω

θi, then f(ξ) < ωβ and

( sup
η<f(ξ)

Pξη) · x = x.

1.9 Piecewise convergence

In the work ahead, we need a weaker notion of convergence for possibly un-
bounded operators, than convergence in the strong sense.

Definition 1.9.1. Let A,A1, A2, . . . be pairwise commutable normal operators.
Then A1, A2, . . . → A piecewise iff there exists a partition {Pα} of unity satis-
fying the following properties:

1) APα and AiPα are bounded for every i and α.

2) For every α, A1Pα, A2Pα, . . .→ APα in the strong topology.
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Theorem 1.9.1. Let A,A1, A2, . . . be pairwise commutable and let A1, A2 → A
in the strong sense. Then A1, A2, . . .→ A piecewise.

Proof. Let B be a complete Boolean algebra such that A,A1, A2, . . . are in (B).
Consider the family of all sets {Pα} of projections in B with the following
properties:

1) Pα > 0 for every α and Pα · Pβ = 0 for every α and β with α ̸= β.

2) For every α and i, APα and AiPα are bounded and A1Pα, A2Pα, . . .→ APα

in the strong topology.

Let F = {Pα} be maximal in the family. Define P̃ by the following:

P̃ = sup{Pα|Pα ∈ F}.

If P̃ = 1, then the theorem is proved. So assume I − P̃ > 0. By relativizing
everything to R(I − P̃ ), we may assume that there are no Pα > 0 satisfying

the condition in 2). Let x ∈ D(A) ∩
∩
i

D(Ai) with x ̸= 0. Let P, P1, P2, . . . by

a sufficiently large segment projection of A,A1, A2, . . . respectively so that the
following conditions are satisfied:

∥x− Px∥ < ε0

∥Px− P1Px∥ < ε1

∥Pn+1Pn · · ·Px− Pn · · ·Px∥ < εn+1

lim
i
εi = 0

and ∑
i

εi < ∥x∥.

Let xn = Pn, . . . , P1Px, let x0 = lim
n→∞

xn and let P0 = inf{P, P1, P2, . . . }.
Then x0 ̸= 0 and x0 ∈ R(P0). So P0 > 0. Obviously AP0, A1P0, A2P0, . . .
are bounded and A1P0, A2P0, . . . → AP0 in the strong topology. This is a
contradiction.

Remark. It should be noted that a partition of unity {Pα} for piecewise
convergence in Theorem 1.9.1 can be taken from the smallest complete Boolean
algebra generated by projections in A,A1, A2, . . .. The converse of the theorem
is false, as is seen from the following example. Let {Pi} be a partition of unity,
let Pi > 0 for every i, and let xi satisfy the conditions ∥xi∥ = 1 and Pixi = xi.
Define λij by the following equation

λij =

{
22i−j if i ≤ j
0 otherwise.
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Also define Aj =
∑
i

λijPi. Obviously AjPi is bounded for every i and j.

Furthermore A1Pi, A2Pi, . . .→ 0 uniformly. If x =
∑
i

1

2i
xi, then

Ajx =
∑
i

λij
2i
xi =

∑
i≤j

2i−jxi.

So ∥Ajx∥ ≥ 1 and A1, A2, . . . does not converge to 0 in the strong sense. This ex-
ample shows that the boundedness of A,A1, A2, . . . does not imply the converse
of the theorem.

1.10 Simultaneous spectrums

Let B0 and B1 be complete Boolean algebras of projections with B0 ⊆ B1 and
let a, ε ∈ R, if u ∈ R(B0) then obviously u ∈ R(B1). The value of J|u− ǎ| < ε̌K in
V (B0) is the same as the value of J|u− ǎ| < ε̌K in V (B1) since only B0 and V (B0)

are involved in the calculation of J|u− ǎ| < ε̌K·
Definition 1.10.1. Let A1, . . . , An be pairwise commutable normal operators
and let a1, . . . , an ∈ C. Take a complete Boolean algebra B such that A1, . . . , An

are in (B). Let u1, . . . , un ∈ V (B) correspond to A1, . . . , An respectively. Then
(a1, . . . , an) is a system of simultaneous spectrums for A1, . . . , An iff for every
ε > 0 J|u1 − ǎ1| < ε̌ ∧ · · · ∧ |un − ǎn| < ε̌K > 0.

This definition does not depend on the choice of the complete Boolean al-
gebra B. Actually one can always take B to be the smallest complete Boolean
algebra such that A1, . . . , An are in (B).

Now we would like to express ‘system of simultaneous spectrums’ directly

without referring to the model. For convenience, we assume thatA1 =

∫
λdE1

λ, . . . , An =∫
λdEn

λ are self-adjoint and a1, . . . , an are real numbers.

Suppose J|ui − ǎi| < ε̌K ≥ P , for every i and P > 0. Then we have

Ei
ai−ε′ ≤ I − P and P ≤ Ei

ai+ε′

where ε < ε′. Therefore we have

Ei
ai+ε′ − Ei

ai−ε′ ≥ P.

Then for every ε > 0,

(Ea1+ε − Ea1−ε) · · · · · (Ean+ε − Ean−ε) > 0.

On the other hand, suppose this condition is satisfied. For every ε, take ε0
with 0 < ε0 < ε. Then

(Ea1+ε0 − Ea1−ε0) · · · · · (Ean+ε0 − Ea1−ε0) = P > 0.
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Obviously we have that for every i

J|ui − ǎi| < ε̌K ≥ P.

Therefore (a1, . . . , an) is a system of simultaneous spectrums for A1, . . . , An.
Consequently (a1, . . . , an) is a system of simultaneous spectrums for A1, . . . , An

iff for every ε > 0

(Ea1+ε − Ea1−ε) · · · · · (Ean+ε − Ean−ε) > 0.

If A1, . . . , An are normal operators and a1, . . . , an are complex numbers, let
Aj = Bj + iCj and aj = bj + icj(i = 1, . . . , n) where Bj , Cj are self-adjoint
and bj and cj are real numbers. Then (a1, . . . , an) is a system of simultaneous
spectrums for A1, . . . , An iff (b1, . . . , bn, c1, . . . , cn) is a system of simultaneous
spectrums for B1, . . . , Bn, C1, . . . , Cn.

If (a1, . . . , an) is a system of simultaneous spectrums for A1, . . . , An, then ai
is a spectrum of Ai for every i. But the converse is not always true.

Proposition 1.10.1. Let u1, . . . , un ∈ V (B) correspond to normal operators
A1, . . . , An respectively and 0 < P ∈ B. Then there exists a system of simulta-
neous spectrums (a1, . . . , an) for A1, . . . , An such that for every ε > 0

J|u1 − ǎ1| < ε̌ ∧ · · · ∧ |un − ǎn| < ε̌K · P > 0.

Proof. Without loss of generality, we assume that A1, . . . , An are self-adjoint.

For every self-adjoint operator A =

∫
λdEλ and every b ≤ c ∈ R we define

A[b, c] = Ec − Eb−0.
Since P > 0, there exist i1, . . . , in ∈ Z such that

A1[i1, i1 + 1]A2[i2, i2 + 1] · · ·An[in, in+1] · P > 0.

Let Ij = [ij , ij+1] for every j = 1, . . . , n. Divide Ij into

[
ij , ij +

1

2

]
and[

ij +
1

2
, ij + 1

]
, pick one of them and name it Ij1 so that

(AiI11) · · · (AnIn1) · P > 0.

Repeat this procedure, that is, divide Ijk into two half intervals and pick Ijk+1

among them so that

(A1I1k+1) · · · (AnInk+1) · P > 0.

Define ai by {ai} =
∩
k

Iik, then (a1, . . . , an) satisfy the proposition.

Let A1, . . . , Al be pairwise commutable normal operators in (B) and let f
be a continuous function. If f(a1, . . . , al) = 0 for every system of simultaneous
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spectrums of A1, . . . , Al, then Jf(A1, . . . , Al) = 0̌K = I. If f(a1, . . . , al) ̸= 0 for
every system of simultaneous spectrums of A1, . . . , Al, then Jf(A1, . . . , Al) ̸=
0̌K = I. In many cases an elementary property of f(A1, . . . , Al) in the model
holds if the corresponding property of f(a1, . . . , al) holds for every system of
simultaneous spectrums of A1, . . . , Al. The converse is not always true. For
example let 0 be a continuous spectrum of A. Then JA ̸= 0̌K = I though 0 is a
spectrum of A.

In the following proposition, we prove only one instance of this kind and
leave all other cases to the reader.

Proposition 1.10.2. Let A1, . . . , Al be pairwise commutable normal operators
in (B) and let f be a continuous function. If

∀t ∈ [0, 1]f(a1, . . . , al, t) ̸= 0

for every system of simultaneous spectrums of A1, . . . , Al, then

J∀t ∈ [0, 1]f(A1, . . . , Al, t) ̸= 0̌K = I.

Proof. Suppose

J∃t ∈ [0, 1]f(A1, . . . , Al, t) = 0̌K = P > 0.

Then there exists a normal operator T in (B) such that 0 ≤ T ≤ 1 andJf(A1, . . . , Al, T ) = 0̌K = P > 0.

Therefore there exists a system of simultaneous spectrums (a1, . . . , al, t) of
A1, . . . , Al, T such that 0 ≤ t ≤ 1 and for every ε > 0

J|A1 − ǎ1|, . . . , |Al − ǎl|, |T − ť| ≤ ε̌K · P > 0.

If δ = |f(a1, . . . , al, t)| > 0, then there exists an ε > 0 such that

∀x1, . . . , xl, s
(
|x1 − a1|, . . . , |xl − al|, |s− t| ≤ ε⇒ |f(x1, . . . , xn, s)− f(a1, . . . , an, t)| ≤

δ

2

)
.

Since f is uniformly continuous in a closed bounded subset of R in V (B) and Ř
is dense in R, this property is extended to R in V (B).
Then J|A1 − ǎ1|, . . . , |An − ǎn|, |T − ť| ≤ ε̌K

≤ J|f(A1, . . . , An, T )− f(ǎ1, . . . , ǎn, ť)| ≤
δ̌

2
K.

Therefore

0 < P · J|A1 − ǎ1|, . . . , |An − ǎn|, |T − ť| ≤ ε̌K
≤ Jf(A1, . . . , An, T ) ̸= 0̌K · P = 0,

which is a contradiction.
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Proposition 1.10.3. Let X be a continuous function from [ǎ, b̌] to C in V (B)

and let M be a positive real number such that

J∀t ∈ [ǎ, b̌]|X(t)| ≤ M̌K = I.

We denote the restriction of X to the domain {ť|t ∈ [a, b]} by the same X and
X(t) · x by y(t) where x is a member of Hilbert space.

If J∫ b̌

ǎ

X(t)dt = BK = I, then

B · x =

∫ b

a

y(t)dt.

Proof. Since |X(t)| has a uniform bound M̌ on [ǎ, b̌], X(t) is continuous with
respect to t ∈ [a, b] in the strong topology. Therefore y(t) is continuous for

t ∈ [a, b] and

∫ b

a

y(t)dt is defined. If

Bn =
n∑

i=1

(b̌− ǎ)

n
·X
(
ǎ+

i(b̌− ǎ)

n

)
,

then J lim
n→∞

Bn = BK = I, and ∥Bn∥(n = 1, 2, . . .) and ∥B∥ have a uniform

bound. Therefore
lim

n→∞
Bn · x = B · x

that is,

lim
n→∞

n∑
i=1

(b− a)

n
y

(
a+

i(b− a)

n

)
= B · x.

Hence we have

B · x =

∫ b

a

y(t)dt.

1.11 Quantum Logic

Let L be the set of all projections in a Hilbert space H and M the set of all
closed linear spaces in H. The assignment of R(P ) to a projection P ∈ L makes
a bijection between L and M. The lattice operations ∧ and ∨ are easily defined
in M as follows. Let Mi(i = 1, 2) be a member of M. The closed linear space
M1∧M2 is defined to be M1∩M2 and M1∨M2 is defined to be the least closed
linear space including M1 ∪M2. The bijection between L and M introduces
the lattice operations ∧ and ∨ in L. The new operations ∧ and ∨ coincide with
the old operations ∧ and ∨ when they are applied to commutable projections
P1 and P2. Let R(P ) =M . The closed linear space R(¬P ) is the closed linear
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space of all elements of H which is orthogonal to every member ofM . The space
R(¬P ) is denoted by M⊥. In another word, the operation ¬ in L corresponds
to the operation ⊥ in M.

L is an orthomodular lattice (see [2]), that is, a lattice which satisfies the
following conditions.

1) ¬¬P = P

2) P ∧ ¬P = 0 and P ∨ ¬P = I

3) ¬(P1 ∧ P2) = ¬P1 ∨ ¬P2 and ¬(P1 ∨ P2) = ¬P1 ∧ ¬P2

4) P1 ∧ (¬P1 ∨ (P1 ∧ P2)) = P1 ∧ P2.

L is also complete as is easily seen from the completeness of M.

Let P1 and P2 be members of L. The commutativity of P1 and P2 can be
expressed in the following way by the language of L. P1 and P2 are commutable
iff P1 = (P1 ∧ P2) ∨ (P1 ∧ ¬P2).

The complete orthomodular lattice L of all projections in H plays an im-
portant role in quantum mechanics (see [2], [3], [5], [6], [11]) and is called a
quantum logic.

Now define V (L) in the same way with V (B) as follows:

1) V
(L)
0 = ϕ

2) if α is a limit, then V
(L)
α =

∪
ξ<α

V
(L)
ξ

3) V
(L)
α+1 = {u|u : D(u) → L and D(u) ⊆ V

(L)
α }

and

4) V (L) =
∪

α∈On

V (L)
α .

Our intention is to define Ju ∈ vK and Ju = vK as before and then to make
the following definitions.

1. J¬φK = ¬JφK
2. Jφ1 ∨ φ2K = Jφ1K ∨ Jφ2K
3. Jφ1 ∧ φ2K = Jφ1K ∧ Jφ2K
4. J∀xφ(x)K = inf

u∈V (L)
Jφ(u)K

5. J∃xφ(x)K = sup
u∈V (L)

Jφ(u)K.
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The difficulty of this program is that the definitions of Ju ∈ vK and Ju = vK
heavily depend on the implication ⇒ and there are no good implication in L.
In order to see this, we first define P1

◦⇒ P2 to be ¬P1 ∨ P2. The connective
◦⇒ is far from implication. Clearly (P1

◦⇒ P2) = I is not equivalent to P1 ≤ P2

where ≤ is the natural order in the sense of lattice. Almost all properties of
implication are violated by

◦⇒. For example, P1 ∧ (P1
◦⇒ P2) ≤ P2 not always

holds.
Now we define P1 ⇒ P2 to be ¬P1∨(P1∧P2) and P1 ⇔ P2 to be (P1 ⇒ P2)∧

(P2 ⇒ P1). Then (P1 ⇒ P2) = I is equivalent to P1 ≤ P2 and (P1 ⇔ P2) = I
is equivalent to P1 = P2. Remark that (P1 ⇒ P2) = I may be read as P1 ⇒ P2

holds. We also define P1 ⊥ P2 to be P1 ≤ ¬P2.

Lemma 1.11.1. Let Pα, Qα, Lα(α ∈ I) be members of L and Lα ⊥ Lβ if α ̸= β.
If ∀α(Pα ≤ Lα ∧Qα ≤ Lα), then

(sup
α
Pα) ∧ (sup

α
Qα) = sup

α
(Pα ∧Qα).

Proof. It suffices to show

(sup
α
Pα) ∧ (sup

α
Qα) ≤ sup

α
(Pα ∧Qα).

Let x ∈ R(sup
α
Pα) ∩ R(sup

α
Qα). Then Lαx ∈ R(Pα) ∩ R(Qα) = R(Pα ∧Qα).

Obviously x =
∑
α

Lαx ∈ R(sup
α

(Pα ∧Qα)).

Corollary 1.11.2.

(P ⇔ Q) = (¬P ∧ ¬Q) ∨ (P ∧Q)

Proof. P ⇔ Q is (¬P ∨ (P ∧ Q)) ∧ (¬Q ∨ (P ∧ Q)). Define L1 = P ∧ Q,
L2 = ¬(P ∧ Q). P1 = P ∧ Q = Q1, P2 = ¬P and Q2 = ¬Q and use the
lemma.

Corollary 1.11.3.
P ∧ (P ⇒ Q) ≤ Q.

Remark that this is read as ‘P ∧ (P ⇒ Q) ⇒ Q is true’.

Proof. By using Lemma 1.11.1, we have P ∧ (¬P ∨ (P ∧Q)) = (0∨ P )∧ (¬P ∨
(P ∧Q)) = (0 ∧ ¬P ) ∨ (P ∧ (P ∧Q)) = P ∧Q ≤ Q.

Corollary 1.11.3 implies that (P1 ⇒ P2) ∧ (P1 ∧Q) ⇒ (P2 ∧Q) is true.

Corollary 1.11.4.
(P ⇒ Q) ∧ ¬Q ≤ ¬P.

Proof. By using Lemma 1.11.1 we have (¬P ∨ (P ∧Q))∧ (¬Q∨0) = ¬P ∧¬Q ≤
¬P .
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The analogy between implication and ⇒ seems to stop here. Now we show
the inadequacy of ⇒ for implication.

Proposition 1.11.5. There is a counter example of

(P1 ⇔ P2) ≤ (Q ∧ P1 ⇒ Q ∧ P2).

Proof. We construct a counterexample in a 3 dimensional Euclidean space. Let
P1 and P2 be commutable andR(P1) andR(P2) be 2 dimensional andR(P1∧P2)
be 1 dimensional. Let R(Q) be an 1 dimensional subspace of R(P1) such that
Q and P1 ∧ P2 are not commutable. Then we have (Q ∧ P1 ⇒ Q ∧ P2) = (Q⇒
0) = ¬Q. However (P1 ⇔ P2) = P1 ∧ P2 ≰ ¬Q.

Proposition 1.11.5 and (P1 ⇒ P2)∧(P1∧Q) ≤ (P2∧Q) implied by Corollary
1.11.3 give an example such that P1 ∧ P2 ≤ Q does not imply P1 ≤ (P2 ⇒ Q).
In order to see this, replace P1, P2, and Q by P1 ⇔ P2, Q ∧ P1 and Q ∧ P2

respectively.

Proposition 1.11.6. There is a counterexample of

(P1 ⇔ P2) ∧ (P1 ∨Q) ≤ (P2 ∨Q).

Proof. We also construct a counterexample in a 3 dimensional Euclidean space.
Let R(P1) be a 2 dimensional linear space and R(P2) be an 1 dimensional
subspace of R(P1). Then R(P1 ⇔ P2) is a 2 dimensional space such that
R(P1) ∩ R(P1 ⇔ P2) = R(P2). Let R(Q) be a 2 dimensional space such that
R(P1) ∩ R(Q) = R(P2) and P1 and Q are not commutable. Then P1 ∨ Q = I
and (P1 ⇔ P2) ∧ (P1 ∨ Q) = P1 ⇔ P2 and P2 ∨ Q = Q. (P1 ⇔ P2) ≰ Q is
obvious whence follows the proposition.

Now we define Ju ∈ vK and Ju = vK by the following formula as before.

Ju ∈ vK = sup
y∈D(u)

(v(y) ∧ Ju = yK)
Ju = vK = inf

x∈D(u)
(u(x) ⇒ Jx ∈ vK)

∧ inf
y∈D(v)

(v(y) ⇒ Jy ∈ uK).
Then an above counterexample is easily transformed into a counterexample of
the equality axiom

u = v ⇒ (u ∈ w ⇒ v ∈ w).

In order to show this, define 0 and 1 as before and let P1, P2, Q not satisfy
(P1 ⇔ P2) ≤ (Q ∧ P1 ⇒ Q ∧ P2) as in Proposition 1.11.5. Define u, v and w by
the following conditions

D(u) = {0} and u(0) = P1.

D(v) = {0} and v(0) = P2.

D(w) = {1} and w(1) = Q.
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Then we have the following.

J0 ∈ uK = sup
x∈D(u)

(u(x) ∧ J0 = xK) = P1.

J0 ∈ vK = sup
x∈D(v)

(v(x) ∧ J0 = xK) = P2.

Ju = vK = inf
x∈D(u)

(u(x) ⇒ Jx ∈ vK) ∧ inf
x∈D(v)

(v(x) ⇒ Jx ∈ uK)
= (P1 ⇒ P2) ∧ (P2 ⇒ P1) = (P1 ⇔ P2).Ju ∈ wK = sup

x∈D(w)

(w(x) ∧ Jx = uK) = Q ∧ J1 = uK.
J1 = uK = (I ⇒ J0 ∈ uK) ∧ (u(0) ⇒ J0 ∈ 1K)

= (I ⇒ P1) = P1.

Clearly Ju = v ⇒ (u ∈ w ⇒ v ∈ w)K = I is (P1 ⇔ P2) ≤ (Q ∧ P1 ⇒ Q ∧ P2).
Since the notion ‘set’ strongly depends on equality, this example shows that

we cannot construct any kind of set theory on V (L) in a usual sense. Nevertheless
V (L) is a nice ground where we observe all Boolean valued models V (B) in V (L)

and their mutual relation. For example, suppose that B and B0 are two complete
Boolean algebras in L and A ∈ R(B). If A is not commutable with some member
of B0, then Bα = eiαAB0e

−iαA is isomorphic to B0 but different from B0 for every
α ∈ R. These isomorphisms induce isomorphisms between V (B0) and V (Bα). An
interesting special case is the case that Bα = B0 for every α ∈ R. Then we have
a continuous nontrivial automorphisms of V (B0). The most interesting case
of this type appears when a topological group and its representation in the
automorphism group of L are given. In this case, there are many isomorphisms
and automorphisms of Boolean valued models in V (L). Effective uses of the
relation between these isomorphisms and the notion of sets in V (L) seem to the
author one of the most interesting subjects in the area.



Chapter 2

Boolean Valued Analysis
Using Measure Algebras

As we pointed out earlier, Dana Scott started Boolean valued analysis [4]. He
proposed using measure algebras. In this chapter we will study Boolean valued
analysis using measure algebras.

2.1 Measure algebras

Let (X,S, µ) be a measure space, that is, let S be a Borel field of subsets
of X, and let µ : S → [0,∞] be a σ-finite σ-additive measure. (By σ-finite,
we mean that there exists a sequence X1, X2, X3, . . . ∈ S such that for every

n µ(Xn) <∞ and X =
∪
n

Xn.)

Let T = {B ∈ S|µ(B) = 0} and B = S/T . Then T is a σ-additive ideal of
S and B is a Boolean σ-algebra. The 0 of B is represented by the empty set ϕ
and the I of B is represented by X.

Let b1 = S1/T and b2 = S2/T . Then B1 = B2 means that S1 is equal to
S2 except for a set of measure zero, that is, S1 and S2 are almost equal. The
operations b1+b2, b1 ·b2, and −b1 are represented by S1∪S2, S1∩S2, and X−S1

respectively. Furthermore if bi = Si/T (i = 1, 2, 3, . . .), then sup
i
bi and inf

i
bi

are represented by
∪
i

Si and
∩
i

Si respectively.

Proposition 2.1.1. The Boolean algebra B satisfies the countable chain con-
dition (denoted by c.c.c.), i.e. if {bα|α ∈ J} ⊆ B, if ∀α ∈ J(bα ̸= 0) and
∀α, β ∈ J(α ̸= β → bα · bβ = 0), then the cardinality of {bα|α ∈ J} is countable.

Proof. Let bα = Sα/T . Then µ(Sα) > 0 and µ(Sα ∩ Sβ) = 0 for α ̸= β. Let

X =
∪
n

Xn such that µ(Xn) < ∞. For every natural number k, there are only

47
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finitely many Sα such that

µ(Xn ∩ Sα) ≥
1

k

since µ(Xn) ≥ µ(Xn∩(Sα1∪· · ·∪Sαm)) ≥ m

k
if µ(Xn∩Sαi) ≥

1

k
and α1, . . . , αm

are distinct. Furthermore µ(Sα) > 0 implies that ∃n µ(Sα∩Xn) > 0 and that α
occurs among finitely many α with µ(Sα ∩Xn) > 0 for some n. The cardinality
of all such α is countable.

Since a Boolean σ-algebra satisfying the c.c.c. is complete (cf. Theorem
3. 28. in [10]), B is a complete Boolean algebra. Note that sup

α
bα may not

be represented by
∪
α

Sα unless {bα|α ∈ J} is countable, where bα = Sα/T .

As before we construct a model V (B) using the measure algebra B. As in §2.,
the natural numbers in V (B) are of the form

∑
α

nαbα, and the rational numbers

in V (B) are of the form
∑
α

rαbα, where nα ∈ ω, rα ∈ Q and {bα} is a partition

of unity.
Let {bα|α ∈ J} be a partition of unity. Since B satisfies the c.c.c., the

cardinality of {Bα|α ∈ I} is countable. Let bα = Sα/T . Without loss of
generality, we can assume that

Sα ∩ Sβ = ϕ if α ̸= β

and ∪
α∈J

Sα = X.

Therefore a partition of unity is nothing but a partition of X into countable

members of S. In this way,
∑
α

nαbα can be identified with a step function

which takes the value nα on each Sα.

2.2 Real numbers in the model

In §1.3, we defined a real number to be the upper half line of a Dedekind cut.
In the case that B is a measure algebra it is more convenient to define a real
number to be the lower half line without the end point, of a Dedekind cut.
Therefore the definition of ‘a is a real number’ is now

a ⊆ Q∧∃s ∈ Q(s ∈ a)∧∃s ∈ Q(s ̸∈ a)∧∀s ∈ Q(s ∈ a⇔ ∃t ∈ Q(s < t∧ t ∈ a)).

As in §1.3,

R(B) = {u ∈ V (B)|Ju is a realK = I}.
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A real in the model is represented by a member of R(B). For each u ∈ R(B) and
r ∈ Q, let

br = Jř ∈ uK.
The definition of the real numbers immediately implies the following three con-
ditions.

1) inf
r∈Q

br = 0

2) sup
r∈Q

br = I

3) br = sup
r<s

bs.

Conversely {br|r ∈ Q} satisfying 1), 2), 3) determines uniquely a u ∈ R(s) such
that

∀r ∈ Q br = Jř ∈ uK.
The meaning of uniqueness is the same as before, that is, if u1 and u2 satisfy
the condition, then Ju1 = u2K = I.

Now let u ∈ R(B) and br = Jř ∈ uK. If br = Sr/T , then since {br|r ∈ Q}
satisfies the above three conditions, we may assume the following without loss
of generality

1)
∩
r∈Q

Sr = ϕ

2)
∪
r∈Q

Sr = X

3) Sr =
∪
r<s

Ss.

We define f : X → R by the following condition

f(x) = sup{r|x ∈ Sr}.

It is easily seen that f is a measurable function from X into R and

Sr = {x ∈ X|r < f(x)}.

On the other hand, let f be a measurable function from X into R. Let

br = {x ∈ X|r < f(x)}/T .

Then {br|r ∈ Q} satisfies the above three conditions and it determines a mem-
ber of R(B). This correspondence between R(B) and the set of all measurable
functions is one-to-one in the following sense. If f and g correspond to the same
u ∈ R(B), then f and g are equal almost everywhere i.e. {x ∈ X|f(x) ̸= g(x)}
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has measure zero. If u, v ∈ R(B) correspond to the same measurable function f ,
then Ju = vK = I.

Let u, v ∈ R(B) and f and g be measurable functions corresponding to u and v
respectively. Then it is easily seen that

f ± g corresponds to u± v,
f · g corresponds to u · v,

‘f(x) = g(x) almost everywhere’ is equivalent to

Ju = vK = I

and ‘f(x) < g(x) almost everywhere’ is equivalent to

Ju < vK = I.

Let λ ∈ R. Then the constant function, whose value is λ, corresponds to λ̌.

Proposition 2.2.1. Let Ju : ω → RK = I and Jui = u(̌i)K = I for every i < ω.
Furthermore let fj correspond to ui for every i ∈ ω and let g correspond to v.
Then ‘fi(x) converges to g(x) almost everywhere’ is equivalent to

J lim
i→∞

u(i) = vK = I.

Proof.

J lim
i→∞

u(i) = vK = I iff J∀ε > 0∃n∀i ≥ n|v − u(i)| < εK = I

iff inf
ε>0

sup
n

inf
i≥n

J|v − u(i)| < ε̌K = I

iff inf
ε>0

sup
n

inf
i≥n

J|v − ui| < ε̌K = I

iff (inf
ε>0

sup
n

inf
i≥n

{x||g(x)− fi(x)| < ε})/T = X/T

iff {x|∀ε > 0∃n∀i ≥ n(|g(n)− fi(n)| < ε)}/T = X/T
iff ‘fi(x) goes to g(x) almost everywhere’.

A non-empty set of real numbers has a least upper bound if it has an upper
bound. As an interpretation of this fact, we get the following theorem immedi-
ately.

Proposition 2.2.2. Let M be a non-empty set of measurable functions and let
f be a measurable function such that

∀g ∈M (g(x) ≤ f(x) almost everywhere).

Then there exists a measurable function h satisfying the following conditions.
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1. ∀g ∈M (g(x) ≤ h(x) almost everywhere).

2. If k is a measurable function such that

∀g ∈M (g(x) ≤ k(x) almost everywhere),

then

h(x) ≤ k(x) almost everywhere.

Let Ju : ω → RK = I and let fi correspond to u(i) for i = 0, 1, 2, . . .. Let∑
i

nibi be a natural number in V (B), that is, ni ∈ ω and {bi}i be a partition

of unity. Let bi = Si/T and {Si}i satisfy the following conditions.

1.
∪
i

Si = X and

2. Si ∩ Sj = ϕ for i ̸= j.

Then a measurable function which corresponds to u(
∑
i

nibi) is the function

which takes the same value as fni on Si i.e. the following function g,

g(x) = fni(x) if x ∈ Si.

Now we get the following theorem as an interpretation of Bolzano-Weierstrass
Theorem.

Proposition 2.2.3. Let g, f0, f1, f2, . . . be measurable functions such that |fi(x)| ≤
g(x) almost everywhere, for every i. Then there exists a measurable function
h(x) satisfying the following conditions.

1) |h(x)| ≤ g(x) almost everywhere.

2) The function h is a Boolean valued cluster function of f0, f1, f2, . . . in the
following sense. For every ε > 0 and for every natural number m there
exist a measurable function k, a sequence (ni)i of natural numbers, and a
sequence (Si)i of members of S such that

a) m ≤ ni for every i

b)
∪
i

Si = X

c) Si ∩ Sj = ϕ for i ̸= j

d) k(x) = fni(x) if x ∈ Si

e) |k(x)− h(x)| < ε almost everywhere.
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2.3 Continuous functions in the model

We now consider the function from R into R in the model i.e. u ∈ V (B) satisfyingJu : R → RK = I.
Proposition 1.4.2, Chapter 1 implies that there is a 1-1 correspondence be-

tween u’s satisfying Ju : R → RK = I and the extensional functions from R(B)

into R(B). We denote the set of all measurable functions by F. Then we can
identify R(B) with F. Therefore we can identify the functions from R into R in
the model with the functions F with the following properties.

1) F : F → F.

2) extensionality for F , that is,

∀f, g ∈ F {x|f(x) = g(x)}/T ⊆ {x|F (f)(x) = F (g)x}/T .

Now we consider R as a measure space by providing it with the Lebesgue
measure. We also think of R×X as a measure space with the product measure.

Definition 2.3.1. A function G : R×X → R is strongly measurable with respect
to the variable x ∈ X iff for every α ∈ F, G(α(x), x) is a measure function of
x.

Let G : R×X → R be strongly measurable with respect to x. Define F : F →
F by

F (α)(x) = G(α(x), x).

Then F satisfies the extensionality condition and represents a function from R
into R in the model.

Remark. If G(a, x) is strongly measurable with respect to x, then G(a, x) is
measurable with respect to (a, x). But the converse is not true.

Strong measurability is very abstract. We define a very useful subclass of
the strong measurable functions.

Definition 2.3.2. A function G : R×X → R is a B-function iff G is a member
of a smallest family G satisfying the following conditions.

1. If f : R → R and g : X → R are measurable, then

f(a) · g(x) ∈ G.

2. If G1(a, x) and G2(a, x) ∈ G, then

G1(a, x) +G2(a, x) ∈ G, and G1(a, x) ·G2(a, x) ∈ G.

3. If Gi(a, x)(i = 0, 1, 2, . . .) ∈ G, then

L
i→∞

Gi(a, x) ∈ G, where L
i→∞

ai is defined by
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L
i→∞

ai =

{
lim
i→∞

ai if the limit exists

0 otherwise.

Proposition 2.3.1. If G is a B-function, then G is strongly measurable.

Proof. The proposition is obvious since L
i→∞

fi(x) is measurable if all fi(x)(i =

0, 1, 2, . . .) are measurable.

Definition 2.3.3. A strongly measurable function G(a, x) is pseudo-continuous
iff for every sequence α0, α1, α2, . . . of measurable functions with

lim
i→∞

G(αi(x), x) = G(α(x), x) almost everywhere

provided that

lim
i→∞

αi(x) = α(x) almost everywhere.

Obviously if G is pseudo-continuous, F defined by F (α)(x) = G(α(x), x)
represents a continuous function in the model. In this sense G corresponds to
a continuous function in the model. The converse is also true, that is, for every
continuous function u in the model, there exists a pseudo-continuous G such
that G corresponds to u. We are going to prove this.

Let the following conditions hold in V (B).

1) u : R → R and
ui : R → R for every i ∈ ω.

2) R =
∪
i∈ω

Ai and Ai ∩Aj = ϕ if i ̸= j.

3) For every a ∈ R

u(a) = ui(a) if a ∈ Ai.

Let α ∈ R(B) and Jα ∈ AiK = bi. There exist S0, S1, . . . ∈ S such that

1) bi = Si/T for every i ∈ ω

2) X =
∪
i∈ω

Si

3) Si ∩ Sj = ϕ if i ̸= j.

Let Fi : F → F correspond to ui for i ∈ ω. Define F : F → F by the following
equation.

F (α)(x) = Fi(α)(x) if x ∈ Si.
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Then obviously F corresponds to u. We use this construction in the following.
Let f : R → R be a continuous function let m ∈ Z and let n be a positive
natural number. Let fn be the function of the linear graph through the points(
m+

i

n
, f

(
m+

i

n

))
. Then fn(x) goes to f(x) if n goes to ∞. Now letJu : R → R is continuousK = I and F : F → F represent u. Define Fn: F → F

by the following equation

Fn(α)(x) = ((i+ 1)− n(α(x)−m))F

(
m+

i

n

)
(x)

+(n(α(n)−m)− i)F

(
m+

i+ 1

n

)
(x)

if m+
i

n
≤ α(x) < m+

i+ 1

n

where i = 0, . . . , n− 1. Let un ∈ R(B) be represented by Fn. We have

J∀x ∈ R lim
n→∞

un(x) = u(x)K = I.

Define Gn : R×X → R by the following equation.

Gn(a, x) = ((i+ 1)− n(a−m))F

(
m+

i

n

)
(x)

+(n(a−m)− i)F

(
m+

i+ 1

n

)
(x)

if m+
i

n
≤ a < m+

i+ 1

n

where i = 0, . . . , n− 1. Obviously Gn is a strongly measurable function,

Fn(α)(x) = Gn(α(x), x),

and Gn correspond to un. Define G : R×X → R by the following

G(a, x) =

{
lim

n→∞
Gn(a, x) if there exists a limit

0 otherwise.

Then G is a strongly measurable function. We claim that G corresponds to u.
Now let α ∈ R(B). Then

J lim
n→∞

un(α) = u(α)K = I,

so
{x| lim

n→∞
Gn(α(x), x) = F (α)(x)}/T = I

i.e.

lim
n→∞

Gn(α(x), x) = F (α)(x) almost everywhere.
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Therefore

G(α(x), x) = F (α)(x) almost everywhere

i.e. G corresponds to u.
This also implies that Gn(α(x), x) converges to G(α(x), x) almost every-

where. As a special case, for every a,Gn(a, x) converges to G(a, x) almost
everywhere with respect to x.

Now we show that G is a B-function. For this it suffices to show that
Gn is a B-function for every n. Let gmni(a) be the characteristic function of{
a|m+

i

n
≤ a < m+

i+ 1

n

}
. Then

Gn(a, x) =
∑
m,i

(
gmni(a)((i+ 1)− n(a−m))F

(
m+

i

n

)
(x)

+gmni(a)(n(a−m)− i)F

(
m+

i+ 1

n

)
(x)

)
.

Denote the right hand side by
∑
m

Hm(a, x). Then

∑
m

Hm(a, x) = L
k→∞

k∑
m=−k

Hm(a, x).

Since

k∑
m=−k

Hm(a, x) is a B-function, Gn(a, x) is also a B-function. Thus we

have obtained the following theorem.

Theorem 2.3.2. For every continuous function u in the model, there exists a
pseudo-continuous B-function G which corresponds to u.

2.4 Baire functions and Borel sets in the model

Let Gn(a, x)(n = 0, 1, 2, . . .) be strongly measurable functions and correspond
to un(n = 0, 1, 2, . . .) respectively where un are functions from R into R in the
model. Let

J∀a ∈ R lim
n→∞

un(a) = u(a)K = I, and G(a, x) = L
n→∞

Gn(a, x).

Proposition 2.4.1. In this situation, G corresponds to u.

Proof. Let α ∈ F and F : F → F represent u. Then

Gn(α(x), x) converges to F (α)(x) almost everywhere.

Therefore
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G(α(x), x) = F (α)(x) almost everywhere.

We are going to use the theory of Baire functions. Therefore we recall the
definition of Baire functions.

Definition 2.4.1. Let X be a topological space. A function from X into R is
called a Baire function if it belongs to the smallest family satisfying the following
conditions.

1. It has all continuous functions from X into R.

2. If f1, f2, . . . belong to it and lim
n→∞

fn(x) = f(x) for every x ∈ X, then f

belongs to it.

It is well-known that if X is a perfect set in an Euclidean space, then the
family of all Baire functions coincides with the family of all Borel measurable
functions.

In the last section, R is considered to be a measure space together with the
family of Lebesgue measurable sets and the Lebesgue measure. However all the
arguments there go through if R is made as a measure space with the family of
Borel sets and the Lebesgue measure on Borel sets. For this measure space, we
rename a B-function as a pseudo-Baire function.

Definition 2.4.2. A function G : R×X → R is a pseudo-Baire function iff G
is a member of a smallest family G satisfying the following conditions.

1. If f : R → R is a Baire function and g : X → R is measurable, then
f(a) · g(x) ∈ G.

2. If G1, G2 ∈ G, then G1 +G2, G1G2 ∈ G.

3. If Gi(i = 0, 1, 2, . . .) ∈ G, then L
i→∞

Gi ∈ G.

Let u be a continuous function in the model. Then there exists a pseudo-
continuous pseudo-Baire function G which corresponds to u.

Definition 2.4.3. A subset B of R×X is a pseudo-Borel set iff B is a member
of the smallest family L satisfying the following conditions.

1. If A is a Borel set of R and S ∈ S, then A× S ∈ L.

2. The family L is closed under Boolean operations.

3. If Bi(i = 0, 1, 2, . . .) ∈ L, then
∪
i

Bi ∈ L.
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Let G be the family of all pseudo-Baire functions and let L be the family of all
pseudo-Borel sets. Then it is easily seen that G is the family of all L-measurable
functions.

Let B be a pseudo-Borel set. Define v ∈ V (B) with D(v) = R(B) as follows.
For every u ∈ R(B), take α ∈ F which corresponds to u. Then

v(u) = {x|⟨α(x), x⟩ ∈ B}/T .

Obviously v is a subset of R in the model and we say that B corresponds to v.

Theorem 2.4.2. The family G corresponds to the set of all Baire functions in
the model and L corresponds to the set of all Borel sets in the model.

Proof. Define W by the following equation.

W = {u|∃g ∈ G (g corresponds to u)}.

Now define w =W ×{I} i.e. w is a constant function defined on W whose value
is I. We claim that

Ju ∈ wK = I ⇒ ∃g ∈ G (g corresponds to u).

First Ju ∈ wK = I implies the existence of a {ui|i ∈ J} and {bi|i ∈ J} such that
{bi}i is a partition of unity, {ui}i is a subset of W , and

u =
∑

ui · bi.

Since B satisfies the c.c.c., the cardinality of J is countable. Let Gi ∈ G(i ∈ J)
correspond to ui and {Si}i ⊆ S satisfy the following conditions.

1) Si/T = bi

2)
∪
i

Si = X

3) Si ∩ Sj = ϕ for i ̸= j.

Define G : R×X → R by the following condition

G(a, x) = Gi(a, x) if x ∈ Si.

Then G ∈ G and G corresponds to u. Next we claim that for every Baire
function u in the model, there exists a G ∈ G which corresponds to u. Since
there exists such a G ∈ G for the continuous function u in the model, it suffices
to show the existence of such a G ∈ G for u with Ju = lim

i→∞
uiK = I assuming

the existence of Gi ∈ G for each ui. Now the existence of G is obvious since we
can take G = L

i→∞
Gi.

Now, define W0 and w0 by

W0 = {u|∃B ∈ L (B corresponds to u)},
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and w0 =W0 × {I}. Then in the same way for every Borel set u in the model,
there exists a B ∈ L such that B corresponds to u.

The converse is also true, that is, every B ∈ L corresponds to some Borel
set u in the model. If B is A×X, then B corresponds to Ǎ. If B is R×S, then
B corresponds to R(B) · b + ϕ̌ · (I − b) where b = S/T . In this correspondence,

Boolean operations and
∪
i∈ω

are preserved. Therefore our claim is proved. In the

same way, it is easily seen that every G ∈ G corresponds to some Baire function
in the model.

2.5 Integration and differentiation in the model

Let Ju : R → R is differential and its derivative is vK = I and let G and H
corresponds to u and v respectively.

Let α, β ∈ F and β(x) ̸= 0 hold almost everywhere. Then

lim
β(x)→0

G(α(x) + β(x), x)−G(α(x), x)

β(x)
= H(α(x), x)

almost everywhere.

Therefore

∂G

∂a
(a, x) = H(a, x) almost everywhere.

On the other hand, let G and H be pseudo-Baire functions and for every a,

∂G

∂a
(a, x) = H(a, x) almost everywhere.

Then for every α, β0, β1, β2, . . . ∈ F such that βi(x) ̸= 0 almost everywhere
(i = 0, 1, 2, . . .) and lim

i→∞
βi(x) = 0 almost everywhere

lim
i→∞

G(α(x) + βi(x), x)−G(α(x), x)

βi(x)
=

∂

∂α
G(α(x), x)

almost everywhere.

Therefore we have the following theorem.

Theorem 2.5.1. Let G(a, x) be a pseudo-Baire function, such that G corre-

sponds to u, and
∂

∂a
G(a, x) exists almost everywhere for all a. Then

Ju is differentiableK = I

and, if
∂

∂a
G(a, x) corresponds to v, then

Jthe derivative of u is vK = I.
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On the other hand, if Jthe derivative of u is vK = I and u and v correspond to
G and H respectively, then

∂

∂a
G(a, x) = H(a, x) almost everywhere for all a.

Let Ju : R → R is a Baire functionK = I andG : R×X → R be a pseudo-Baire

function corresponding to u. The relation between

∫
R
u(t)dt and

∫
R
G(a, x)da

is discussed in the following theorem.

Theorem 2.5.2. Ju is integrableK = I is equivalent to ‘G(a, x) is integrable

for almost all x’. If Ju is integrableK = I, then

∫
R
G(a, x)da corresponds to∫

R
u(t)dt.

Proof. Obviously max(0, G(a, x)) corresponds to max(0, u). Therefore we may

assume that 0 ≤ G(a, x) and J∀t ∈ R 0̌ ≤ u(t)K = I. Also J∫
R
u(t)dt =∑

n∈Z

∫ n+1

n

u(t)dtK = I and

∫
R
G(a, x)da =

∑
n∈Z

∫ n+1

n

G(a, x)da. Therefore it

suffices to show that Ju is integrable on [ň, (n + 1)
√
]K = I is equivalent to

‘G(a, x) is integrable on [n, n + 1] for almost all x’ and

∫ n+1

n

G(a, x)da cor-

responds to

∫ n+1

n

u(t)dt provided that Ju is integrable on [ň, (n + 1)
√
]K =

I. Since min(M, G(a, x)) corresponds to min(M, u(t)),

∫ n+1

n

G(a, x)da =

lim
M→∞

∫ n+1

n

min(M,G(a, x))da and J∫ n+1

n

u(t)dt = lim
M→∞

∫ n+1

n

min(M,u(t))dtK =
I, we can assume that G(a, x) ≤ M and J∀t ∈ R u(t) ≤ M̌K = I. Now let both
G1(a, x) and G2(a, x) correspond to u. Then by Fubini’s theorem,∫

X

∫ n+1

n

|G1(a, x)−G2(a, x)|dadx =

∫ n+1

n

∫
X

|G1(a, x)−G2(a, x)|dxda = 0.

Therefore ∫ n+1

n

G1(a, x)da =

∫ n+1

n

G2(a, x)da almost everywhere.

Now we have only to prove the theorem for some specific G(a, x) corresponding
to u. Since lim

i→∞
Gi(a, x) = G(a, x) implies lim

i→∞
min(M,Gi(a, x)) = min(M,G(a, x))

and

∫ n+1

n

lim
i→∞

fi(t)dt = lim
i→∞

∫ n+1

n

fi(t)dt if 0 ≤ fi(t) ≤ M(i = 0, 1, 2, . . .), it
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suffices to prove the theorem for the continuous function u in the model. We
define um and Gm by the equations

um(t) = ((i+ 1)−mt)u

(
n+

i

m

)
+ (mt− i)u

(
n+

i+ 1

m

)
if n+

i

m
≤ t ≤ n+

i+ 1

m
for i = 0, 1, . . . ,m− 1

and

Gm(a, x) = ((i+ 1)−ma)F

(
n+

i

m

)
(x) + (ma− i)F

(
n+

i+ 1

m

)
(x)

if n+
i

m
≤ a ≤ n+

i+ 1

m
for i = 0, 1, . . . ,m− 1

where F : F → F represents u. Then

∫ n+1

n

Gm(a, x)da corresponds to

∫ n+1

n

um(t)dt.

If G(a, x) = L
m→∞

Gm(a, x), then lim
m→∞

∫ n+1

n

Gm(a, x)da =

∫ n+1

n

G(a, x)da

and J∫ n+1

n

u(t)dt = lim
m→∞

∫ n+1

n

um(t)dtK = I, and hence

∫ n+1

n

G(a, x)da corre-

sponds to

∫ n+1

n

u(t)dt.

Corollary 2.5.3. Let v be a Borel set in the model, let B be a pseudo-Borel
set corresponding to v, and let m be the Lebesgue measure in the model. Then∫
R
χB(a, x)da corresponds to m(v), where χB is the characteristic function of

B.

Proof. We also denote the characteristic function of v in the model by χv. Then
for every u ∈ R(B) and for every α ∈ F corresponding to u,

Jχv(u) = 1̌K = Ju ∈ vK
= {x|⟨α(x), x⟩ ∈ B}/T
= {x|χB(α(x), x) = 1}/T .

Therefore χB corresponds to χv. Since Jm(v) =

∫
R
χv(t)dtK = I,

∫
R
χB(a, x)da

corresponds to m(v).

Corollary 2.5.4. Let Ju : R → R is a Baire functionK = I, Jv ⊆ R is a Borel
setK = I, G : R × X → R be a pseudo-Baire function corresponding to u, and
B ⊆ R × X be a pseudo-Borel set corresponding to v. For every x ∈ X, we

denote {a ∈ R|⟨a, x⟩ ∈ B} by Bx. Then

∫
Bx

G(a, x)da corresponds to

∫
v

u(t)dt.
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Proof. Since J∫
v

u(t)dt =

∫
R
χv(t) · u(t)dtK = I and χB · G(a, x) corresponds

to χv · u,
∫
R
χB(a, x)G(a, x)da corresponds to

∫
v

u(t)dt. The corollary follows

immediately from this.

We are going give an interpretation of Baire category theorem. In order to
understand the meaning of this interpretation, the following definition is useful.

Definition 2.5.1. A measure space (X,S, µ) is a Borel measure space iff X is
a topological space and S is the family of all Borel sets in X.

If (X,S, µ) is a Borel measure space and X is perfectly separable, then a
pseudo-Borel set in R×X is nothing but a Borel set in R×X and a pseudo-Baire
function: R×X → R is nothing but a Borel-measurable function: R×X → R.

Definition 2.5.2. Let B be a pseudo-Borel set of R×X and let f ∈ F. Then
f <−B is defined to be ‘⟨f(x), x⟩ ∈ B almost everywhere.’ The set B is pseudo-
dense in R × X iff ∀ε > 0∀f ∈ F∃g ∈ F (g <−B and |f(x) − g(x)| < ε almost
everywhere). Obviously if B corresponds to u in the model, B is pseudo-dense
in R×X iff u is dense in R in the model.

Definition 2.5.3. Let B be a pseudo-Borel set in R×X and let f ∈ F be such
that f <−B. Let D ∈ S and ε > 0. Then D is a domain of U(f, ε) in B iff

∀g ∈ F (x ∈ D ∧ |f(x)− g(x)| < ε⇒ ⟨g(x), x⟩ ∈ B almost everywhere).

Proposition 2.5.5. Let B be a pseudo-Borel set in R×X corresponding to v
in the model, let f ∈ F correspond to u in the model and f <−B. Let D ∈ S, let
ε > 0 be a rational and let b = D/T . Then D is a domain of U(f, ε) in B iffJU(u, ε̌) ⊆ vK ≥ b, where U(u, ε̌) is the ε̌-neighborhood of u in the model.

Proof.

JU(u, ε̌) ⊆ vK = J∀x ∈ R|x− u| < ε̌⇒ x ∈ vK
= inf

u1∈R(B)
J|u1 − u| < ε̌⇒ u1 ∈ vK

= {x|∀g ∈ F(|f(x)− g(x)| < ε⇒ g <−B)}/T

Therefore JU(u, ε) ⊆ vK ≥ b iff

{x|∀g ∈ F(|f(x)− g(x)| < ε⇒ ⟨g(x), x⟩ ∈ B)}/T ≥ D/T ,

whence follows the proposition.

Definition 2.5.4. A pseudo-Borel set B in R×X is pseudo-open iff for every

f ∈ F with f <−B, there exists a Dn ∈ S, a domain of U

(
f,

1

2n

)
in B(n =

0, 1, 2, . . .) such that

X =
∪
n

Dn almost everywhere
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that is
µ(X −

∪
n

Dn) = 0.

Proposition 2.5.6. Let B be a pseudo-Borel set in R×X corresponding to v
in the model. Then B is pseudo-open iff Jv is open in RK = I.

Proof. Suppose that B is pseudo-open. Let f ∈ F correspond to u and f <−B.
Take Dn as in the definition of ‘pseudo-open’. If bn = Dn/T , then sup

n
bn = I

and JU (u, 1

2n

)
⊆ vK ≥ bn. If r =

∑
n

1

2n
(bn − (bn−1 + · · · + b0)), then r is a

rational in the model, Jr > 0̌K = I and

JU(u, r) ⊆ vK = I.

Therefore Jv is openK = I. Now suppose that Jv is openK = I. Let f ∈ F
correspond to u and f <−B. Then

J∃r ∈ Q(r > 0 ∧ U(u, r) ⊆ v)K = I.

Therefore there exists an r =
∑
i

ri · bi such that

JU(u, r) ⊆ vK = I

where the ri are positive rationals and {bi}i is a partition of unity. Let bi = Si/T

and Dn =
∪{

Si|ri ≥
1

2n

}
. The proposition now follows from Proposition

2.5.5.

Now we get the following interpretation of the Baire category theorem.

Theorem 2.5.7. If Bn(n = 0, 1, 2, . . .) is pseudo-open and pseudo-dense in

R×X, then
∩
n

Bn is also pseudo-dense.

2.6 Relation between projection algebras and
measure algebras

Let H be a Hilbert space and B be a complete Boolean algebra of projection
in H. If H is separable, then B is closely related with a measure algebra. The
base of our discussion is the following spectral theorem. (See [7]).

Theorem 2.6.1 (spectral theorem). Let H be separable. If {Aα} is a set of
commutable self-adjoint operators on H, then there is a measure space (X,µ)
and a unitary map U : H → L2(X,µ) such that UAαU

−1 is multiplication by
a real measurable function on Ãα. If B̃ is any real measurable function on X
and MB̃ is the corresponding multiplication operator then B = U−1MB̃U is a
self-adjoint operator on H which commutes with the Aα.
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Let H be separable and B be a complete Boolean algebra of projections in
H. Extend B to a maximal complete Boolean algebra B̃ of projections in H.
Let {Aα} in the Theorem 2.6.1 be B̃ and (X,µ) be the measure space described
in the theorem. If P ∈ B, then P 2 = P and the real measurable function
P̃ corresponding P must take either 0 or 1 as its values almost everywhere.
Therefore P̃ is represented by a characteristic function of a measurable set SP .
A measurable set SP is uniquely determined by P in the sense that S′

P is equal
to SP up to a measure zero set if S′

P also corresponds to P . On the other
hand, let S be a measurable set and S̃ be the multiplication operator of the
characteristic function of S. Then S̃ is a projection operator on L2(X,µ) and
U−1S̃U is a projection operator on H commuting with all members of B̃. Since
B̃ is maximal, U−1S̃U must be a member of B̃. Let B̃0 be the measure algebra
of (X,µ). Then the assignment P 7→ SP is clearly an isomorphism between B̃
and B̃0. Let B0 be the image of B under the isomorphism. From the definition
of a complete Boolean algebra of projections follows that for each A ⊆ |B|

supBA = supB̃A

and
infBA = infB̃A,

that is, a class A ⊆ |B| has the same sup and inf relative to B that it has relative
to B̃. By the isomorphism, we have that each subset of |B0| has the same sup and
inf relative to B0 that it has relative to B̃0. Thus B0 is a complete subalgebra
of B̃0. The isomorphism between B̃ and B̃0 induces an isomorphism between

V (B̃) and V (B̃0) and also an isomorphism between V (B) and V (B0). Therefore

we can make a correspondence between notions on V (B) or V (B̃) in Chapter 1

and notions on V (B0) or V (B̃0) in this chapter. One minor trouble is that we

defined a real number to the upper half line in a Dedekind cut in V (B̃0) and to be

the lower half line without the end point in a Dedekind cut in V (B̃0). However
this comes from a very minor technical convenience and now we define a real

number to be the upper half line in both V (B̃) and V (B̃0). Everything in this
chapter goes through in the same way even if the definition of a real number is
changed in this way. Now let A be a self-adjoint operator in (B̃). Then A is a

real in V (B̃). Let A0 be the image of A under the isomorphism between V (B̃)

and V (B̃0). Then A0 is a real in V (B̃0). Therefore A0 is a measurable function
in (X,µ). This is exactly the correspondence between self-adjoint operators
and multiplication operators of real measurable functions of (X,µ) in Theorem
2.6.1.

Now what is a real number in V (B0)? Let T be the ideal of all measure
zero sets in (X,µ). A real measurable function f of (X,µ) is said to be B0-
measurable if for every r ∈ R, {x ∈ X|f(x) < r}/T is a member of B0. Then a
real number in V (B0) obviously corresponds to a real B0-measurable function of
(X,µ).

Let f : R → R be continuous and A be a self-adjoint operator in (B̃). If∑
riPi is a rational in (B̃), then f(

∑
riPi) =

∑
f(ri)Pi. If {

∑
riPi} converges
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to (A) in V (B̃), then
∑
f(ri)Pi converges to f(A) in V (B̃). Let g be a real

measurable function of (X,µ) corresponding to A. Let h be a real measurable
function corresponding to

∑
riPi. Then h is a step function satisfying the

following condition

h(x) = f(ri) if x ∈ SPi

where SPi is a measurable set corresponding to Pi. If
∑
f(ri)Pi converges to

A, then
∑
f(ri)Pi converges to f(A). Since h(x) converges to f(g(x)) almost

everywhere, f(g(x)) corresponds to f(A).
Let f ′(x) be also continuous. In the terminology of §2.3, f(a) is strongly

measurable. Then Theorem 2.5.1 shows that the derivative of f at g(x) in V (B̃0)

is f ′(g(x)). If g is B0-measurable, then the derivative of f at g(x) in V (B0) is
also f ′(g(x)). This is equivalent to the theorem that the derivative of f at A in
V (B) is f ′(A).

Now letA0, A1, A2, . . . , A be self-adjoint operators in (B) and ∥A0∥, ∥A1∥, ∥A2∥, . . .
have a uniform bound, let f0(x), f1(x), f2(x), . . . , f(x) be real B0-measurable
function corresponding to A0, A1, A2, . . . respectively. Then |fi(x)| ≤ M al-
most everywhere. Suppose that A0, A1, A2, . . . converges to A in V (B). Then
f0(x), f1(x), f2(x), . . . converges to f(x) almost everywhere. Now let g ∈ L2(X,µ).
Then f0(x)g(x), f1(x)g(x), f2(x)g(x), . . . converges to f(x)g(x) in L2(X,µ) by
Lebesgue’s convergence theorem. Thus A0, A1, A2, . . . converges to A in the
strong topology. This is Theorem 1.6.1, Chapter 1.
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In my opinion there is a wide gap between logic and mathematics. Let me
illustrate with two examples.

1. In recursive function theory, almost all interesting recursive functions are
not primitive, but almost all recursive functions, found in mathematical
practice, are primitive recursive∗.

2. In logic, we can easily construct many arithmetical statements that are
not provable in Peano arithmetic, but we hardly find any such statement
in mathematical practice∗.

One explanation of the second fact might be the following. When we learned
to formalize mathematics, the formalization itself was an important but difficult
task. Naturally we chose a very strong system so that it was easy to see that
everything could be formalized in the system. It is likely that we do not need
such a strong system and hence our identification of mathematical practice with
a certain strong formal system could be an illusion.

Here we will define a conservative extension of Peano arithmetic and develop
analysis systematically in it. We will show that theorems which can be proved
in analytic number theory can be proved in Peano arithmetic.

First of all, the system of our concern is a conservative extension, hence
any arithmetical proposition provable in our system is in fact provable in Peano
arithmetic. My main objective will be to show that analysis can be done using
only arithmetic comprehension. Indeed, much of modern mathematics has in
fact an interpretation in a conservative extension of Peano arithmetic, that is,
in a very weak system. This may, in a way, serve as a characteristic of current
mathematics. In other words, it suggests that in spite of its powerful look,
current mathematics has progressed, in essence, along arithmetic lines.

As for the conservative extension of Peano arithmetic, we will take a simple
weak system, whose proof-theoretic nature is very transparent. Since this sys-
tem’s proof-theoretic nature is very clear, we expect that there should be very
nice functional interpretation of it.

This might be useful for our first question since functional interpretations
of many theorems in analysis will produce many candidates of mathematical
recursive functions that are not primitive recursive. In order to prevent false
optimism, let us discuss the matter in more detail. There is a good candidate of
a mathematical recursive function that is not primitive recursive i.e. a theorem
of van der Waerden asserts that the following function f(l) is recursive.

f(l) = µx (every division of {1, . . . , x} into 2 classes contains 1 class with
an arithmetical progression of length l).

The known proofs of the theorem provide only non-primitive recursive bound
for f(l). However whether f(l) is primitive recursive or not is a difficult open
problem. This shows us that the difficulty of the problem is to establish that a

∗Recent discovery of Kirby, Paris and Harrington on homogeneous partition relation is a
great advance for these two questions.

Gentzen’s ε0-induction is also a beautiful exception for 2. But it comes from metamathe-
matical motivation.
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candidate is not primitive recursive rather than to find many candidates. Nev-
ertheless we still would like to have more candidates and we would feel better
if they come from the mathematical domains like number theory or analysis.
There is another source of candidates in what is called primitive recursive anal-
ysis. In order to explain this, let γ be Euler’s constant. The number γ is
primitive recursive definable if definition of real numbers are given by a Cauchy
sequence together with a modulus of convergence. However it is open whether
γ is primitive recursive definable if real numbers are given by Dedekind cuts,
i.e. the function f(p, q) for natural numbers p, q defined by the following condi-
tions seems a reasonable candidate of a recursive function that is not primitive
recursive.

f(p, q) = 0 if
p

q
< γ

f(p, q) = 1 otherwise.

In general, it is immaterial for recursive analysis if a real number is a Dedekind
cut or a Cauchy sequence. However the distinction is important in primitive
recursive analysis. Since our system is arithmetical, this is blurred in our for-
malization.

An additional difficulty with our use of a strong system for the formalization
is that it might mislead us by causing us to forget a certain problem: Let L
be the language of arithmetic consisting of 0, 1,+, ·, exp., and = and let S be
a subsystem of quantifierfree primitive recursive arithmetic restricted to the
language L. Since S is much weaker than quantifierfree primitive recursive
arithmetic, the following conjecture seems to me very reasonable.

an + bn = cn → n = 1 ∨ n = 2 ∨ a = 0 ∨ b = 0

is not provable in S.
Though this conjecture can be considered as a problem of proof theory, proof

theory, at this moment, offers little hope of a solution.∗ It may well be that
an implicit purpose of our work is to bring such problems to surface and focus
attention on them.

Preliminary. Let L̃ and L be two languages. Then L ⊂ L̃ iff every formula
of L is a formula of L̃. Let T and T̃ be a theory of L and L̃ respectively. Then
T̃ is a conservative extension of T iff for every formula A of L,

(T ⊢ A) ↔ (T̃ ⊢ A).

Examples.

1. Let T be a theory of a language L and let T ⊢ ∃xA(x) where ∃xA(x)
is a closed formula. If c is an individual constant not contained in L,
then T ∪ {A(c)} is a conservative extension of T . This is a basic fact
used in the usual proof of the completeness theorem. Similarly if T ⊢

∗There is a beautiful model theoretic proof by Shepherdson [22] for a little weaker problem.



71

∀x1 · · · ∀xn∃yB(x1, . . . , xn, y) for a closed formula ∀x1 · · · ∀xn∃yB(x1, . . . , xn, y)
and f is a function constant not contained in L, then

T ∪ {∀x1 · · · ∀xnB(x1, . . . , xn, f(x1, . . . , xn))}

is a conservative extension of T .

2. Bernays-Gödel Set theory is a conservative extension of ZF Set theory.

3. Let T be a first order theory and let T and T̃ be obtained from T by adding
type theory with full comprehension axioms. Then T̃ is a conservative
extension of T . This is an implication of the completeness theorem or the
cut elimination theorem of higher type.

4. In [14], Kreisel proved that the theory of nonstandard analysis is a con-
servative extension of ordinary analysis.





Chapter 3

Real Analysis

3.1 The first system

We use the higher type language. The use of higher type language is very
convenient since it is the natural language for analysis and we can take all the
definitions in analysis as they are without any change. We talk about “types”
rather than “orders”.

Definition 3.1.1. Finite types: 0 is a finite type (the basic one); if τ1, . . . , τn
are finite types, then τ = [τ1, . . . , τn] is also; those are the only finite types.
“Finite” will be omitted most of the time. Type [0] is also called type 1.

Definition 3.1.2 (Language). 1. Free and bound variables of each type. We
use metavariables a, b, c, . . . , x, y, z, . . . , α, β, γ, . . . and φ,ψ, χ, . . . respec-
tively in order to denote free variables of type 0, bound variables of type
0, free variables of higher types and bound variables of higher types.

2. Individual constants. 0, 1.

3. Function symbols. +, ·.

4. Predicate constants. =, <.

Definition 3.1.3 (Terms, formulas and abstracts).
Terms are defined as follows.

1. 0, 1, and a free variable of type 0 is a term.

2. If t1 and t2 are terms, so are t1 + t2 and t1 · t2.

3. Those are the only terms.

Terms are also called abstracts of type 0.

1. If t1 and t2 are terms, then t1 = t2 and t1 < t2 are formulas.

73
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2. Suppose α1, . . . , αn, α are free variables of type τ1, . . . , τn, τ respectively
and τ = [τ1, . . . , τn]. Then α[α1, . . . , αn] is a formula.

3. If A and B are formulas, so are ¬A and A ∧B.

4. If A(α) is a formula, if α is a free variable of type τ , and if φ is a bound
variable of type τ not occurring in A(α), then ∀φA(φ) is a formula. (This
includes the case that τ is 0 i.e. the case which produces ∀xA(x).)

5. A formula A is said to be arithmetical if A does not have any higher type
quantifier.

6. If A(α1, . . . , αn) is an arithmetical formula, α1, . . . , αn are of type τ1, . . . , τn
respectively, and φ1, . . . , φn are new distinct bound variable of type τ1, . . . , τn,
then {φ1, . . . , φn}A(φ1, . . . , φn) is an abstract of type [τ1, . . . , τn].

7. If α is a free variable of type [τ1, . . . , τn] and V1, . . . , Vn, are abstract of
type τ1, . . . , τn respectively, then α[V1, . . . , Vn] is a formula.

8. Those are the only formulas and abstracts.

It should be remarked that every abstract has no higher type quantifiers
i.e. every abstract is arithmetical.

A formula defined either as in 1, 2, or in 7 is called atomic. Note that
a formula defined as in 7 may contain a lot of logical symbols. We have
not defined a formula of the form V [V1, . . . , Vn] where V is also an abstract;
such a formula is defined in another way in the following sense. Let V be
of the form {φ1, . . . , φn}A(φ1, . . . , φn). Then V [V1, . . . , Vn] can be interpreted
as A(V1, . . . , Vn), where A(V1, . . . , Vn) is obtained from A(φ1, . . . , φn) by sub-
stituting V1, . . . , Vn for φ1, . . . , φn respectively. Therefore in the subsequent
argument, an abstract will be used as a meta-expression except in the case of
7. The V mentioned above is such an example.

The formal definition of “substitution” needs some careful procedure. Con-
sider the substitution of V for α in α[V1], where V is of the form {φ}F (φ). This
is done only after we define the substitution of V1 for φ in F (φ). More pre-
cisely we define the height h(τ) of the type τ by h(0) = 0 and h([τ1, . . . , τn]) =
max(h(τ1), . . . , h(τn))+ 1, and we define the substitution of V for α in F (α) by
double induction on the height of type of α and the number of logical symbols
in F (α). We sometimes have to change the names of bound variables in the
substitution as is easily seen in the case of the substitution of {χ}∀xG(φ, x) for
α in ∀xF (α, x), since no figure of the form ∀x(· · · ∀x(· · · ) · · · ) is a formula in
our definition. See pp. 171–173 in Proof Theory [23], referred to as PT from
now on, for the precise treatment of the substitution, and for the notion of proof
which we are going to discuss.

Since the cut elimination theorem is very useful for our purpose, we use
Gentzen’s sequent. A sequent is of the form

A1, . . . , Am → B1, . . . , Bn
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where A1, . . . , Am, B1, . . . , Bn are formulas and m,n = 0, 1, 2, . . .. A1, . . . , Am

is called the antecedent of the sequent and B1, . . . , Bn is called the succedent of
the sequent. The meaning of

A1, . . . , Am → B1, . . . , Bn is A1 ∧ · · · ∧Am → B1 ∨ · · · ∨Bn.

We use Greek capital letters Γ,Π,∆,Λ,Γ0,Γ1, . . . to denote finite (possibly
empty) sequences of formulas separated by commas.

Definition 3.1.4. An inference is an expression of the form

S1

S
or

S1 S2

S

where S1, S2 and S are sequents. S1 and S2 are called the upper sequents and
S is called the lower sequent of the inference.

Intuitively this means that when S1(S1 and S2) is (are) asserted, we can
infer S from it (from them). We restrict ourselves to inferences obtained from
the following rules of inferences, in which A,B,C,D, F (α) denotes formulas.

1) Structural rules:

1.1) Weakening:

left:
Γ → ∆

D,Γ → ∆
; right:

Γ → ∆

Γ → ∆, D
.

The formula D is called the weakening formula.

1.2) Contraction:

left:
D,D,Γ → ∆

D,Γ → ∆
; right:

Γ → ∆, D,D

Γ → ∆, D
.

1.3) Exchange:

left:
Γ, C,D,Π → ∆

Γ, D,C,Π → ∆
; right:

Γ → ∆, C,D,Λ

Γ → ∆, D,C,Λ
.

1.4) Cut:
Γ → ∆, D D,Π → Λ

Γ,Π → ∆,Λ
.

The formula D is called the cut formula of this inference.

2) Logical rules:

2.1)

¬ left:
Γ → ∆, D

¬D,Γ → ∆
; ¬ right:

D,Γ → ∆

Γ → ∆,¬D
.

The formulas D and ¬D are called the auxiliary formula and the
principal formula, respectively, of this inference.
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2.2)

∧ left:
C,Γ → ∆

C ∧D,Γ → ∆
and

D,Γ → ∆

C ∧D,Γ → ∆
;

∧ right:
Γ → ∆, C Γ → ∆, D

Γ → ∆, C ∧D
.

The formulas C and D are called auxiliary formulas and C ∧ D is
called the principal formula of this inference.

2.3)

∀ left:
F (V ),Γ → ∆

∀φF (φ),Γ → ∆
; ∀ right:

Γ → ∆, F (α)

Γ → ∆, ∀φF (φ)
.

Where V is an arbitrary abstract with the same type as φ and α
does not occur in the lower sequent. The formulas F (V ) and F (α)
are called auxiliary formulas and ∀φF (φ) the principal formula. The
α in ∀: right is called the eigenvariable of this inference. Note that
V, φ, α may be of type 0, that is, they may be of the form t, x, a
respectively. Note also that every abstract V is arithmetical.

∀ left is equivalent to the arithmetical comprehension axioms which we prove
later.

Definition 3.1.5 (Formal proofs).
A proof P is a tree of finite sequents satisfying the following conditions:

1) The topmost sequents of P are of the form

D → D,

where D is an atomic formula.

2) Every sequent of P except the lowest one is an upper sequent of an inference
whose lower sequent is also in P .

A topmost sequent of P is called an initial sequent. The unique lowest se-
quent of a proof P will be called the end-sequent of P . A proof with end-sequent
S is called a proof of S.

Let us name our (logical) system LS. A sequent S is called provable (or
provable in LS) if there is a proof of it.

Theorem 3.1.1. For every formula D,

D → D

is provable.

Proof. Immediate by the number of logical symbols in D.
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Theorem 3.1.2 (Cut elimination Theorem).
If a sequent S is provable, then S is also provable without using cuts.

Proof. Easily obtained from Gentzen’s original proof of his Hauptsatz by defin-
ing the grade of the formula A by the following equation:

the grade of A = ω · a+ b

where a is the number of higher type quantifiers in A and b is the number of
logical symbols in A. See PT for details.

We use ∨,⊃,≡, ∃ as combinations of ¬,∧, ∀.
Here we give two example of inferences which will be used quite often.

1.
A(0) ∧ ∀x(A(x) ⊃ A(x+ 1)) ⊃ ∀xA(x),Γ → ∆

∀φ(φ[0] ∧ ∀x(φ[x] ⊃ φ[x+ 1]) ⊃ ∀xφ[x]),Γ → ∆

where A(0) is arithmetical, that is, it has no higher type quantifiers.

2.
→ ∀x(A(x) ≡ A(x))

→ ∃φ∀x(φ[x] ≡ A(x))

where A(x) is arithmetical, that is, it has no higher type quantifiers. Note
that this inference is a combination of ¬ left, ∀ left, and ¬ right. Formulas
of this form are called arithmetical comprehension axioms. These are
equivalent to ∀ left inferences.

Definition 3.1.6 (Mathematical axioms).
The set of mathematical axioms consist of the following sentences.

1. First order Peano axioms on 0, 1,+, ·, <,=.
First order axioms of mathematical induction are excluded here since they
are included in a higher type form.

2. Mathematical induction (MI).

∀φ(φ[0] ∧ ∀x(φ[x] ⊃ φ[x+ 1]) ⊃ ∀xφ[x])

3. Equality axiom (EQ).

∀φ∀∀y(x = y ∧ φ[x] ⊃ φ[y]).

The set of these sentences will be denoted by Γ0. The first system of finite
type arithmetic, FA1, is the system with the logical system LS and the mathe-
matical axioms of Γ0, that is, Γ → ∆ is provable in FA1 iff Γ,Γ0 → ∆ is provable
in LS. Also A is provable in FA1 iff Γ0 → A is provable in LS.

Theorem 3.1.3. Our first system FA1 is a conservative extension of (first
order) Peano arithmetic.
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Proof. (Cf. Problem 16. 10. in PT) Let A be a first order formula. Suppose that
A is provable in FA1. By the cut elimination theorem, there exists a cutfree
proof P of

Γ0 → A.

Observe the following.

1) There is no higher type ∀ right in P since A does not have any higher
type quantifiers. Higher type quantifiers in Γ0 should be introduced by
∀ left, and therefore higher type quantifiers introduced by ∀ right cannot
disappear without cuts.

2) In the same way as in 1), all higher type quantifiers introduced by ∀ left are
∀φ the outermost logical symbol in MI or EQ.

3) Because of 1), one can replace all higher type free variables by

0 = 0.

4) By 2) and 3), we can replace

A(0) ∧ ∀x(A(x) ⊃ A(x+ 1)) ⊃ ∀xA(x),Γ → ∆

∀φ(φ[0] ∧ ∀x(φ[x] ⊃ φ[x+ 1]) ⊃ ∀xφ[x]),Γ → ∆

and
∀x∀y(A(x) ∧ x = y ⊃ A(y)),Γ → ∆

∀φ∀x∀y(φ[x] ∧ x = y ⊃ φ[y]),Γ → ∆

by

A′(0) ∧ ∀x(A′(x) ⊃ A′(x+ 1)) ⊃ ∀xA′(x),Γ → ∆

∀z1 · · · ∀zm(A′(0) ∧ ∀x(A′(x) ⊃ A′(x+ 1)) ⊃ ∀xA′(x)),Γ → ∆

and
∀x∀y(A′(x) ∧ x = y ⊃ A′(y)),Γ → ∆

∀z1 · · · ∀zm∀x∀y(A′(x) ∧ x = y ⊃ A′(y)),Γ → ∆

where two lines between the upper sequent and the lower sequent indicate
several inferences and ∀z1 · · · ∀zm quantifies all free variables in A′(0).
Then MI and EQ become finitely many instances of first order mathemat-
ical induction and the first order equality axioms. Therefore the theorem
is proved.

The system FA1 is the one in which we will develop classical analysis.

Theorem 3.1.4. Let A(a) be a formula, possibly with higher type quantifiers.
Then

∀x∀y(A(x) ∧ x = y ⊃ A(y))

is FA1-provable.
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Proof. Immediate by mathematical induction on the number of logical symbols
in A(a).

Note that the analogy of Theorem 3.1.4 for MI is not possible. This is easily
seen as follows. If such an analogy can be proved, then by §18. in PT, the truth
definition of the first order Peano arithmetic can be established in FA1 which
contradicts Theorem 3.1.3.

In our original lecture notes, we used a different system from FA1. We would
like to explain the situation here. We denote the logical system in the lecture
notes by and the mathematical system there by FA′

1. LN is obtained from LS
by restricting ∀ left in the following way. Which makes LN weaker than LS.

∀ left in LN

F (V ),Γ → ∆

∀φF (φ),Γ → ∆
or

F (α),Γ → ∆

∀φF (φ),Γ → ∆

where V does not have higher type free variables. Through LN is weaker than
LS, mathematical axioms in FA′

1 is stronger than the mathematical axioms in
FA1.

Definition 3.1.7. Mathematical axioms in FA′
1. The set of mathematical ax-

ioms consist of the following formulas.

1. Peano axioms on 0, 1,+, ·, <,=.

2. Mathematical induction (MI’) in the strongest form, viz., for any formula
of our language, say A(a), the following is an instance of MI’:

∀Y1 · · · ∀Ym(A′(0) ∧ ∀x(A′(x) ⊃ A′(x′)) ⊃ ∀xA′(x)),

where A′(0) is obtained from A(0) by replacing all the free variables by
distinct bound variables Y1, . . . , Ym (hence Y1, . . . , Ym are not necessarily
of type 0).

3. Equality axiom (EQ) is introduced in the following form: for every A(a),
∀Y1 · · · ∀Ym∀x∀y(x = y ⊃ (A′(x) ≡ A′(y))), where A′ and Y1, . . . , Ym have
the same meaning as in 2.

The set of these formulas will be called Γ′
0. The system FA′

1 is the one with
the logical system LN and the mathematical axioms of Γ′

0. Note that a formula
A (of our language) is provable in FA′

1 if and only if Γ → A is provable in LN,
where Γ is a finite subset of Γ′

0. Therefore we identify those two statements.
Also, we write Γ′

0 → A in order to express that Γ → A is provable for some
finite Γ.

Theorem 3.1.5. FA′
1 is a conservative extension of (first order) Peano arith-

metic.
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Proof. Let A be an arithmetical formula (without any higher type variable).
Suppose Γ′

0 → A is provable (in LN). We wish to show that → A is provable in
Peano arithmetic.

Let τ be the type of a quantifier which occurs in the proof. Consider all the
uses of ∀ left of type τ in the proof and let those abstracts be V1, . . . , Vn. In order
to simplify the notation, we write each of those as Vj(a): {φ1, . . . , φi}A(φ1, . . . , φi, a),
where a represents all the free variables of type 0 in Vj .

Case 1) n = 0. Consider {φ1, . . . , φi}(0 = 0). This is the “type τ version” of
0 = 0, which we may call U temporarily. We will replace each variable of type
τ by U and knock off excessive inferences throughout the proof.

Such replacement is defined by induction on the number of logical symbols
in a formula or abstract. A free variable of type τ , say ατ occurs either in the
form ατ [· · · ] or α[· · ·ατ , · · · ]. In the first case, replace the entire part by 0 = 0.
In the latter, replace ατ by U . For other formulas, the replacement is defined
from the induction hypothesis. For example, if F (φ) has been converted to
F ′(φ) and φ is not of type τ , then ∀φF (φ) is transformed to ∀φF ′(φ). If F (φ)
has been converted to F ′(φ) and φ is of type τ , then ∀φF (φ) is transformed to
F ′(U).

It is obvious that initial sequents are converted to the initial sequents: In ∀

right, say
Γ → ∆, F (ατ )

Γ → ∆, ∀φF (φ)
,

the upper sequent has turned to Γ′ → ∆′, F ′(U). Eliminate this inference. We
treat ∀ left in a similar manner. Consider a use of ∀ left whose abstract is not
of type τ :

F (V ),Γ → ∆

∀φF (φ) : Γ → ∆

where the type of V is not τ . Recall that V contains no higher order free
variables. This part is transformed to

F ′(V ),Γ′ → ∆′

∀φF ′(φ),Γ′ → ∆′

which is another ∀ left.

The endsequent does not contain higher order free variables, hence remains
unchanged through the process.

Case 2) n > 0. For this case we first define a transformation of formulas
in P in a manner that the resulting formulas are rid of quantifiers of type
τ . Let ∀φF (φ) be a formula where φ is of type τ . Then change ∀φF (φ) to
∀xF ′(V1(x))∧∀xF ′(V2(x))∧· · ·∧∀xF ′(Vn(x)), where F

′ is the transformation of
F , which has already been defined. The transformation of an arbitrary formula
should be obvious.

Next we prove the following statement:
(∗) Given a sequent in P , say

Γ(α1, . . . , αm) → ∆(α1, . . . , αm),
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where α1, . . . , αm are all the free variables in the sequent whose type is τ , we
can construct a proof of a sequent

Γ′(Vi1(a1), . . . , Vim(am)) → ∆′(Vi1(a1), . . . , Vim(am)),

where Vij is any one of V1, . . . , Vn, where a1, . . . , am are new, mutually distinct
free variables, Γ′ and ∆′ are obtained from Γ and ∆ respectively by replacing all
the quantifiers of type τ by those of first order in a manner as described above,
and the proof of this sequent does not contain any quantifier of type τ .

Notice that there can be nm of those sequents.

1◦. Initial sequents. Suppose S(α1, . . . , αm) is an initial sequent in P and
α1, . . . , αm are all the free variables of type τ in S. Then S is trans-
formed to S′ by the first transformation. S′(Vi1(a1), . . . , Vim(am)) is a
sequent of the form D → D which does not contain any quantifier of type
τ . So it is provable without any quantifiers of type τ .

2◦. ∀ left of type τ of the form
F (Vi(a)),Γ → ∆

∀φF (φ),Γ → ∆
.

Let us denote the upper sequent by F (Vi(a), α1, . . . , αm),Γ(α1, . . . , αm) →
∆(α1, . . . , αm). It has been changed to:

F ′(Vi(a), Vi1(a1), . . . , Vim(am)),Γ′(· · · ) → ∆′(· · · ).

By adding some logical inferences, we can deduce:

∀xF ′(V1(x), Vi1(a1), . . . , Vim(am)) ∧ · · ·

∧∀xF ′(Vn(x), Vi1(a1), . . . , Vim(am)),Γ′(· · · ) → ∆′(· · · ).

3◦. ∀ left of type τ of the form
F (αk),Γ → ∆

∀φF (φ),Γ → ∆
.

The upper sequent can be transformed to:

F ′(Vik(ak), Vi1(a1), . . . , Vim(am)),Γ′(· · · ) → ∆′(· · · ),

for any given Vi1(a1), . . . , Vik(ak), . . . , Vin(am). By adding some logical
inferences, we obtain

∀xF ′(V1(x), Vi1(a1), · · · , Vim(am)) ∧ · · ·

∧∀xF ′(Vn(x), Vi1(a1), . . . , Vim(am)),Γ′(· · · ) → ∆′(· · · ).

4◦. ∀ right of type τ :
Γ → ∆, F (αk)

Γ → ∆,∀φF (φ)
.

Let α̃ be the sequence of free variables in the lower sequent, say α1, . . . , αm,
where αk is missing. Let us denote the upper sequent by Γ(α̃) → ∆(α̃), F (αk, α̃)
and let us denote the sequence of abstracts V1(a1), . . . , Vm(am) whereVk
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is missing by Ṽ . Consider any number ik such that 1 ≤ ik ≤ n. Then we
have Γ′(Ṽ ) → ∆′(Ṽ ), F ′(Vik(ak), Ṽ ), from which we obtain

Γ′(Ṽ ) → ∆′(Ṽ ), ∀xF ′(Vik(x), Ṽ ).

Since ik is arbitrary, it follows that

Γ′(Ṽ ) → ∆′(Ṽ ), ∀xF ′(V1(x), Ṽ ) ∧ · · · ∧ ∀xF ′(Vn(x), Ṽ ).

5◦. ∀ left whose type is not τ :
F (U),Γ → ∆

∀φF (φ),Γ → ∆
.

The upper sequent has been transformed to:

F ′(U, Vi1(a1), . . .), Γ
′(· · · ) → ∆′(· · · ).

So we obtain

∀φF ′(φ, Vi1(a1), . . .), Γ
′(· · · ) → ∆′(· · · ).

Other cases can be treated similarly.
Thus, one by one, we can eliminate quantifiers of higher type and in the

end we obtain a first order proof of Γ′′
0 → A, where Γ′′

0 does not contain any
higher order variables. Each formula of Γ′′

0 is an instance of an axiom of Peano
arithmetic, hence A is provable in Peano arithmetic.

(We must of course see that Γ′′
0 consist of first order instances of Γ′

0. Sup-
pose, for instance, ∀φF (φ) is an induction formula. This part is transformed
to ∀xF (V1(x), a) ∧ · · · ∧ ∀xF (Vn(x), a), which can still serve as an induction
formula.)

As I explained immediately after Theorem 3.1.4, the union of FA1 and FA′
1

is not a conservative extension of Peano arithmetic.
In my lecture notes, I actually carried out everything in FA1 but pretended

that I did so in FA′
1. Let me explain it here.

Suppose that the following inference is an inference in LS but not an inference
in LN.

F (V (α1, . . . , αn)),Γ → ∆

∃χF (χ),Γ → ∆

where α1, . . . , αn are all higher type free variables in V (α1, . . . , αn). Then the
following is an inference in LN.

F (V (α1, . . . , αn)),Γ → ∆

∃χF (χ(α1, . . . , αn)),Γ → ∆
.

Of course, ∃χF (χ(α1, . . . , αn)) and ∃χF (χ) are different but have the same
mathematical interpretation. Therefore one can claim that one is doing in FA′

1

when he is actually doing in FA1 since he is only skipping some transformation
and the result would be the same for an arithmetical sentence. However in
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practice this transformation is extremely complicated as is easily seen in the
following example. Suppose we proved the following formula in FA′

1

∀ξF (α, β, ξ(α, β)).

In order to apply this theorem for some special case, we have to change this
theorem to the form

∀ξF (α, β, ξ(α, β, γ)).
In general, we should prove infinitely many instances of the form

∀ξF (α, β, ξ(α, β, γ1, γ2, . . .)).

The reason that I pretended to take the complicated system FA′
1 in the place of

FA1 is the following. Kreisel strongly insisted that one should take the strongest
form of mathematical induction, that is, MI′ in FA′

1. This made me believe that
there would be some important theorem where MI′ would be essential and that
the complication in FA′

1 might be worthwhile. However in my case study, I
have not encountered any such case and I am returning to my original sys-
tem. Besides, FA1 would be much better for producing (nonprimitive) recursive
functions by interpreting the theorems in analysis. If we try to build a measure
theory in our framework, then the situation seems to be different. Consider for
example hypothesis of the form

∀n (Xn is measurable)

where Xn is an arithmetically defined sequence of sets of reals. We cannot in
general find an arithmetically defined sequenceMn of measures of Xn. Then we
use instead the hypothesis of measured sequence of sets i.e. a pair of sequences
(Xn,Mn) and the hypothesis

∀n (Mn is the measure of Xn).

Now we have to do with measured sequences whenever we speak of measurable
sequences in the usual texts. Since (Mn is the measure of Xn) is quite a compli-
cated predicate, we have to use the whole induction in this situation. See [10]
and [11] for this matter.

There is also a temptation to use a stronger system than FA1 provided that
the system is a conservative extension of Peano arithmetic. However in a sense,
if the system is weaker, the result is better. And also FA1 is the system most
likely to have a good interpretation for our program to produce mathematical
(nonprimitive recursive functions).

3.2 The second system

Our first system, FA1, is not convenient in practice when we wish to develop
analysis, hence the introduction of the second system, FA, which is equivalent
to FA1 but formulated in a slightly different way. It is, in its mathematical
context, the system of rational numbers.
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Definition 3.2.1. In addition to the symbols of FA1, FA has the following as
primitive symbols (constants).

Unary predicate : N :

Binary predicate : ≤ .

The intended meanings of those constants are : N(a)

means “a is a natural number” and a ≤ b means “a is equal to or less than b”.

Definition 3.2.2. The logical system for FA is LS defined in §3.1. The math-
ematical axioms for FA, say Γ̃, are essentially those of Peano’s for natural
numbers and the axioms on rationals

1. N(0); ∀x(N(x) ⊃ N(x+ 1))

2. Eq: Equality axioms.

3. MI: Mathematical induction is formulated in the
form:

∀φ(φ[0] ∧ ∀x(N(x) ∧ φ[x] ⊃ φ[x+ 1]) ⊃ ∀x(N(x) ⊃ φ[x])).

4. Axioms on 0, 1,+ and ·, relativized to N .
∀x(N(x) ∧N(y) ⊃ x+ (y + 1) = (x+ y) + 1) is such an axiom.

5. Axioms on +,−, · and ÷ (for rationals as a field).
Examples. ∀x∀y(x+ y = y + x);

∀x∀y∀z(y ̸= 0 ⊃ (x/y = z ≡ x = yz)).

6. Relating N to rationals

∀x∃y∃z(0 < x ⊃ N(y) ∧N(z) ∧ z ̸= 0 ∧ x = y/z).

It can be easily shown that the axioms of the second system are interpretable
in the first system, hence the second system is also a conservative extension of
Peano arithmetic. (Define rationals as the equivalence classes of pairs of natural
numbers, using a pairing function.)

It is in this system, FA, we are going to carry our analysis.

Remark. For the proof of the fact that FA is a conservative extension of
Peano arithmetic, we would like to add the following explanation. First make
a standard interpretation of FA in FA1. Then let A be a first order formula in
FA1. It is easily seen that

A ≡ AN

is provable in FA1 by mathematical induction on the number of logical symbols
in A, where AN is obtained from A by replacing ∀x by ∀x(N(x) ⊃). From this
follows the theorem that FA is a conservative extension of Peano arithmetic.
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3.3 Defining reals

Our object is to develop a theory of classical analysis using only arithmetical
comprehension axioms. Thus this theory can be formulated in our system FA.

We will not develop the whole theory in a strictly formal manner. Rather,
we will present a way of doing calculus, only pointing out how to avoid non-
arithmetical comprehension. We shall first introduce some informal notations,
which are familiar to the working mathematicians. For example, we will identify
∧ (and) and ∩ (intersection). We will use A = {x|A(x)} to mean, as usual,
the set of x (rationals) which satisfy A(x). Then A(x) may be denoted by
x ∈ A. The set A, as above, can be identified with the abstract {x}A(x). The
intersection A ∩ B may be used for {x}(A(x) ∧ B(x)). Similarly with ∪. An

abstract such as {x}(∃yA(y) ∧ B(x, y)) may be expressed as
∪
y∈A

{x|B(x, y)}.

We do not attempt to list all the possible notation; the context of each notation
will appeal to common sense.

A formula A is said to be arithmetical if the quantifiers in A are of type 0.
Note that all abstracts are arithmetical by definition.

Let α be of type 1. We can identify α with {x}α(x), that is, {x|α(x)}. In this
sense, our discussion of abstracts always includes a discussion of free variables
as a special case.

Definition 3.3.1. Reals. Let α be a free variable of type 1. We will use R(α)
to denote the following formula:

∃xα[x] ∧ ∃x¬α[x] ∧ ∀x(α[x] ≡ ∃y(x < y ∧ α[y])).

The intended meaning of R(α) is of course that α is a Dedkind cut of ratio-
nals, or α is a real number.

Hence, if R(A), then we say that A is a real number.
Notice that R is arithmetical.

Proposition 3.3.1. Rationals among reals are definable as abstracts from orig-
inal rationals.

Proof. Let a be any term (a formal expression of type 0). Then there is an
abstract of type 1, say â, such that ∀x(â(x) ≡ x < a). Namely â is {y}(y < a).
This defines a as a Dedekind cut. Let a be any rational number. Then the
proposition is obvious.

Remark. A real number α is said to be implicitly defined by A if ∃!φA(φ)
(there is a unique φ such that A(φ)) and A(α). In impredicative mathematics,
the existence of a set such as {x|∃φ(A(φ) ∧ φ(x))} can be established and in
the presence of ∃!φA(φ), the equivalence of α and {x}(∃φ(A(φ)∧φ(x))) can be
proved. Hence α is explicitly definable (not by an arithmetical abstract). So
implicit definability and explicit definability amount to the same. In our system,
on the other hand, we cannot establish the existence of {x|∃φ(A(φ) ∧ φ(x))}
(an impredicative set), hence arises the importance of the difference between
implicit and explicit definabilities.
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Proposition 3.3.2. The basic relations of reals, = and <, can be expressed
arithmetically. The four arithmetic operations of reals, +,−, · and ÷, can be
defined by abstracts.

Proof. 1) Let E(α, β) denote: ∀x(α[x] ≡ β[x]). Then define equality (=) to be
{φ,ψ}E(φ,ψ). We denote E(α, β) by α = β.

2) Let I(α, β) denote ∃x(¬α[x] ∧ β[x]). Then I(α, β) expresses α < β.
Of course = and < defined as above make sense only when R(α) and R(β)
are assumed.

3) Let A(α, β, a) denote ∃x∃y(α[x]∧β[y]∧ a = x+ y). Then + is defined to be
{φ,ψ, z}A(φ,ψ, z). We write α+ β for {z}A(α, β, z).

Other operations will be dealt with in a later section when we introduce
the precise definition of function. The basic properties for those relations and
operations can be easily proved (though tedious) and the proof can be carried
out in FA. Try R(α) ∧R(β) → R(α+ β).

Remark. The completeness of the reals, in its absolute sense, is not provable
in our system. A weak form of completeness is, however, provable, namely, a
sequence of reals which has an upper bound has a definable least upper bound.
The meaning of this will become clear later.

From now on, we will make it “look like calculus”, applying standard nota-
tion from calculus as much as possible, hence a drastic change must be made in
the use of some letters. Also some abbreviated notation will be introduced.

Let a, b, c, x, y, z, . . . stand for reals, while r, s, t, . . . , ε, δ, . . . stand for ratio-
nals. In the usual ε − δ method, we may think that ε and δ run over the
rational number. Thus ∀xA(x) will be an abbreviation of ∀φ(R(φ) ⊃ A(φ)). If
x stands for a real and r stands for a rational, an expression such as x > r is
an “abbreviated” expression for x > r̂, where r̂ is {x}(t < r).

An expression such as ∀rA(r̂) can be a legitimate formula: Let A(r̂) be
A({y}(y < r)), which is a formula. Then ∀rA({y}(y < r)), or ∀rA(r̂) is a
formula.

The following are some useful facts.

Proposition 3.3.3. 1) ∀φ∀r(R(φ) ⊃ (r < φ ≡ φ[r]));

2) ∀x∀y(x < y ⊃ ∃r(x < r < y)); and

3) ∀x∀y(x < y ⊃ ∃r∃s(x < r < s < y)) are provable in FA, where x and y
stand for reals and r and s stand for rationals.

ϕ (the empty set) denotes {r}(r < r).
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3.4 Functions

We will define functions of reals in some intervals. Let me list again our
convention that Γ(a, b, . . .) → ∆(a, b, . . .) means R(α), R(β), . . . ,Γ(α, β, . . .) →
∆(α, β, . . .).

Proposition 3.4.1. Intervals of reals (closed, open, half closed, bounded, -
unbounded) are explicitly definable in parameters. We use the standard notation
such as [a, b] and c ∈ [a, b].

Proof. The interval [a, b] is {φ}(R(φ)∧a ≤ φ ≤ b) and c ∈ [a, b] means a ≤ c ≤ b.
An interval is definable if the end points are.

Definition 3.4.1. An abstract {r}A(r, c), where c is a free variable of type 1 and
there may be some parameters in A, is said to define a function in the interval
I explicitly (in these parameters) if c ∈ I → R({r}A(r, c)) is provable in FA.
Or we do the discussion under the assumption that ∀c ∈ I(R({r}A(r, c))). A
function defined by {r}A(r, c) as above may be expressed as f(c) = {r|A(r, c)}.
Then we say that f is (explicitly) definable in the interval I.

If one would like to discuss an arbitrary function, he should introduce a new
free variable α of type [0, 1], define f(c) = {r|α[r, c]}, and discuss under the
hypothesis ∀β(R(β) ⊃ R({r|α[r, β]})).

The number of arguments can be easily increased. The interval I can be the
set of all reals, which is certainly definable.

Let a and b be two reals. Then [a, b], (a, b], [a, b), (a, b) are definable in a and
b. Therefore we can always use general notions of closed or open interval. Let
∗A = {s|∃r > sA(r)}. Then ∗A is arithmetical in A. The ∗-operation is very
convenient in defining a real from a given set of rationals.

Proposition 3.4.2. Reals are closed under the following operations: −A, |A|, A+
B,A−B,A ·B, 1/B and A/B, where in the last two B ̸= 0.

This proposition means that, for example, if A is explicitly definable and
R(A), then −A is explicitly definable and R(−A) is provable in FA. The sum
A+B appeared in §3.3.

Proof.

−A = {t|∃r∃s(t = −r ∧ s < r ∧ ¬A(s))}.

|A| = A ∪ (−A).

A ·B = ∗{t|∃r∃s(t = r · s ∧ 0 < r < A ∧ 0 < s < B)}
∪∗{t|∃r∃s(t = r · s ∧ 0 < r < −A ∧ 0 < s < −B)}
∪ −∗ {t|∃r∃s(t = r · s ∧ 0 < r < −A ∧ 0 < s < B)}
∪ −∗ {t|∃r∃s(t = r · s ∧ 0 < r < A ∧ 0 < s < −B)}
∪{r|r < 0 ∧ (A = 0 ∨B = 0)}.
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A−B = A+ (−B).

1/B = ∗{t|∃s(s > 0 ∧ ¬B(s) ∧ t = 1/s)}
∪{t|∃r∃s(s < r < 0 ∧ ¬B(s) ∧ t = 1/r)}.

A/B = A · 1/B.
In order to show that these are reals, recall the lemma immediately above.

Proposition 3.4.3. The functions −, | |,+, ·,÷ are explicitly definable func-
tions, defined for all reals (except B = 0̂ for the last case).

It is only a matter of routine work to establish all the basic properties about
those functions. Try (x+ y)z = xz + yz.

Proposition 3.4.4. The composition of functions is explicitly definable.

Proof. As an example, consider the following case. Let A(a), B(a) and C(b, c)
be abstracts which define functions f(a), g(a) and h(b, c). Then R(A(a)) and
R(B(a)), if a belongs to an appropriate interval, and C(A(a), B(a)), which is
again an abstract, defines h(f(a), g(a)). We are of course assuming that the
values of f(a) and g(a) belong to the domain of h.

Definition 3.4.2. Let f be a function (on a domain D).

1) f is said to be continuous at a point c in D if

∀ε > 0∃δ > 0∀x ∈ D(|x− c| < δ ⊃ |f(x)− f(c)| < ε)

where ε and δ range over rationals, while x stands for reals. Here |x−c| < δ

is, more precisely, |x− c| < δ̂.

2) f is continuous on D if

∀c ∈ D∀ε > 0∃δ > 0∀x ∈ D(|x− c| < δ ⊃ |f(x)− f(c)| < ε)

3) f is uniformly continuous on D if

∀ε > 0∃δ > 0∀x, y ∈ D(|x− y| < δ ⊃ |f(x)− f(y)| < ε).

4) f is bounded above if ∃r∀x ∈ D(f(x) < r); similarly with a lower bound.

We can generalize the notions defined above to functions of several arguments
in an obvious manner.

Note that ε and δ (the familiar letters in calculus!) stand for rationals. In
calculus whether you take these as any reals or restrict them to rationals it
comes out the same. The following propositions are easily proved in FA.

Proposition 3.4.5. The composition of continuous functions is continuous.

Proposition 3.4.6. All the familiar functions are definable and continuous;
+,−,×,÷ (if the second argument is not 0), | |, etc.
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3.5 Sequences

Definition 3.5.1. Let A : {r}A(s, r) be an abstract of type 1. Then A is called
a sequence of reals if ∀s(N(s) ⊃ R({r}A(s, r))). Or we do the discussion on
sequences under the assumption that ∀s(N(s) ⊃ R({r}A(s, r))).

We will let n,m, . . . stand for natural numbers. So an expression such as
∀s(N(s) ⊃ R({r}A(s, r))) can be written as ∀nR({r}A(n, r)). The fact that
A is a sequence may be symbolically expressed as {r}A(n, r) (regarding n as
varying) or {An} or even {an}.

Definition 3.5.2. A sequence {an} is bounded above if ∃r∀n(an < r) (r ratio-
nal); bounded below if ∃r∀n(r < an); and bounded if ∃r∀n(|an| < r).

Proposition 3.5.1. The supremum of a sequence, which is bounded above ex-
ists: namely, the sup of a sequence which is bounded from above is real. A
proposition about inf can be stated in a symmetric manner.

Proof. Let A : {r}A(n, r) be such a sequence with an upper bound. Then the
sup of A, which we denote sup

n
A or sup

n
an is defined to be {r}(∃nA(n, r)), which

is an abstract. We will show that

1) sup
n
an is a real.

2) an ≤ sup
n
an.

3) If an ≤ a for every n, then sup
n
an ≤ a.

Since each an is a Dedekind cut of rationals, and {an} is bounded from

above, sup
n
an =

∪
n

an =
∪
n

{r|A(n, r)} defines a Dedekind cut. 2) and 3) are

also obvious.
We define the inf by the following equation

inf
n
an =∗ {r|∀nA(n, r)}

provided that {an} is {r|A(n, r)} and {an} has a lower bound.
As we have just done, we will often employ set theoretical arguments; they

can be easily rewritten in our system.

Proposition 3.5.2. Let {an} be a sequence. Then lim sup, lim inf and lim of
{an} are definable abstracts; namely there are abstracts of type 1 which express
those notions (and the necessary properties are provable in FA).

Proof. Let {r}A(n, r) be the abstract which defines {an}. Then lim sup an is de-
fined as ∗{r}(∀n∃m ≥ nA(m, r)}, which is an abstract. Furthermore lim inf an
is defined to be ∗{r}(∃n∀m ≥ nA(m, r)). In order to see that those defi-
nitions are appropriate, show that ∀ε > 0∃m(|(lim sup an) − am| < ε) and
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∀ε > 0∃m(|a − am| < ε) → a ≤ lim sup an are provable in FA, presuming
that lim sup an is a real (namely not ∞). We define lim an to be lim sup an (or
lim inf an) when lim sup an = lim inf an. Thus, when we make a statement about
lim an, it is a statement about lim sup an, under the assumption that it is equal
to lim inf an. Consequently, a formula such as a = lim an is an abbreviation of

lim sup an = lim inf an ∧ a = lim sup an.

We can show that

a = lim an ↔ ∀ε > 0∃N∀n ≥ N(|a− an| < ε)

is provable in FA. If one of those conditions (hence both) holds, then we say
that a is the limit of {an} or that {an} converges to a. So we can also say that
the limit of a sequence is definable as an abstract.

Proposition 3.5.3. lim an = a ∧ lim bn = b → lim(an + bn) = a + b and
lim an = a ∧ lim bn = b→ lim(an − bn) = a− b are provable in FA.

Definition 3.5.3. A sequence {an} is said to be a Cauchy sequence if ∀ε >
0∃N∀n,m ≥ N(|an − am| < ε).

Proposition 3.5.4. A sequence {an} is a Cauchy sequence if and only if it is
convergent, where by “{an} is convergent” we mean lim an exists (and is a real).

Proof. The “If” part is proved as usual. The “Only if” part, which is usually
a consequence of the completeness of the reals, is established by recalling the
definition of reals (Dedekind cuts of rationals). Suppose {an} is Cauchy. We
can show that a Cauchy sequence is bounded. Let ε = 1 and let N be the
corresponding natural number. Then max(aN+1+1, a1, . . . , aN ) can be an upper
bound. The maximum can be defined as an abstract as follows.

{r|r < aN+1 + 1 ∨ ∃n ≤ N(r < an)}.

Similarly with a lower bound. Therefore lim sup an and lim inf an exist. We
know that lim inf an ≤ lim sup an. So if we can show the opposite inequality,

we are done. Note that lim inf an =∗
∪
m

∩
n≥m

an and lim sup an =∗
∩
m

∪
n≥m

an.

If lim inf < lim sup, then there exist rationals r1, r2 such that r1 < r2, ∃s > r2
(s ∈ lim sup), and ∃s < r1 (s /∈ lim inf).

These imply

1) r1 < r2

2) ∀m∃n ≥ m(r2 ∈ an)

3) ∀m∃n′ ≥ m(r1 /∈ an′).
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Since n and n′ depend on m, let us write them as n(m) and n′(m) respectively.
We may assume {n(m)} and {n′(m)} are increasing in m.

Now, for every ε > 0, there exists an Nε such that, if n, n′ ≥ Nε, then

|an − an′ | < ε.

Take ε > 0 such that ε < r2 − r1. Then we have a contradiction. Note that
all notions involved here are arithmetical and that the whole argument can be
carried out in FA.

3.6 Continuous functions

Theorem 3.6.1. Let f be a continuous function defined on [a, b]. Then (1) f
is uniformly continuous, (2) f is bounded above and below, and (3) f attains its
maximum and minimum values in [a, b].

Proof. We continue to observe our notational convection for real and rational
numbers. We also use r in the place of r̂.

(1) Given ε > 0, we wish to show a contradiction from the hypothesis

∀δ > 0∃x, y ∈ [a, b](|x− y| < δ ∧ |f(x)− f(y)| ≥ ε).

Fix an arithmetical enumeration of rational numbers in [a, b], say (s0, t0), (s1, t1), (s2, t2), . . ..
(This is easily done since there are arithmetical one-to-one correspondences be-
tween N and N × N and between N and Q, where N is the set of all natural
numbers and Q is the set of all rational numbers.)

Using the hypothesis, we can arithmetically define (s′n, t
′
n) to be the first

pair in the enumeration satisfying.

1◦

|s′n − t′n| <
1

n

2◦

|f(s′n)− f(t′n)| ≥ ε.

Define c = lim
n

sup s′n. By Proposition 3.5.2, c is a real and c ∈ [a, b]. Now the

contradiction easily follows from the continuity of f at c.
Now I would like to remark that the whole proof can be carried out in FA.

First, c is defined as an abstract in FA, since only arithmetical notion in involved
there. Next, we used that f is continuous at c. In the form of inference, this
becomes ∀ left whose abstract is c.

It should be remarked that δ satisfying

∀x, y ∈ [a, b](|x− y| < δ ⊃ |f(x)− f(y)| < ε)

is arithmetically definable i.e. define δ to be
1

n
with the condition

∀s1, s2 ∈ [a, b]

(
|s1 − s2| <

2

n
⊃ |f(s1)− f(s2)| <

ε

2

)
.
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(2) We want to define upper and lower bounds for f . Use the uniform
continuity of f (which we just proved) with ε = 1. Then there is a definable
positive rational δ such that if x, y ∈ [a, b] and |x−y| < δ, then |f(x)−f(y)| < 1.
Let N be the largest integer such that a +Nδ ≤ b. Then 1 + max(f(a), f(a +
δ), . . . , f(a + Nδ)) and −1 + min(f(a), f(a + δ), . . . , f(a + Nδ)) are definable
upper and lower bounds for f , respectively. Here max and min can be defined
as an abstract.

(3) Let d = {s|∃r(a ≤ r < b∧ s < f(r))}. From (2) it follows that d is a real
number. We claim that d is an upper bound of f in [a, b]. Suppose otherwise
that is, suppose there were an x ∈ [a, b] such that d < f(x). Then there exists
an ε > 0 such that 0 < ε < f(x)− d. Since f is continuous at x, there exists a
rational number r ∈ [a, b] such that

d < f(x)− ε < f(r)

which is a contradiction.
Suppose now f(a) < d.
Now we would like to show that

∃x ∈ [a, b] f(x) = d.

For every positive natural number n, define pn by the following equation.

pn =∗
{
r|a ≤ r < b ∧ ∀s

(
a ≤ s ≤ r ⊃ f(s) < d− 1

n

)}
.

Then a ≤ pn ≤ b. If p = sup
n
pn, it is immediate that d = f(p). It is also clear

that the arguments in (2) and (3) can be carried out in FA.

Theorem 3.6.2 (Intermediate Value Theorem).
Suppose f is continuous in [a, b], f(a) < 0, and f(b) > 0. Then there exists a
definable real d in (a, b) such that f(d) = 0.

Proof. If

d =∗ {r|a ≤ r ≤ b ∧ ∀s(a ≤ s ≤ r ⊃ f(s) < 0)},

then

1) d is a real number and a < d < b.
This is clear since f is continuous at a and b.

2) 0 ≤ f(d).
Suppose f(d) < 0. Since f is continuous at d,

∃δ > 0∀r(|r − d| < δ ⊃ f(r) < 0)

which contradicts the definition of d.
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3) f(d) ≤ 0.
Suppose 0 < f(d). Since f is continuous at d,

∃δ > 0∀r(|r − d| < δ ⊃ f(r) > 0).

But this contradicts the definition of d.

Theorem 3.6.3 (Inverse function theorem).
Let f be a continuous monotone function defined in [a, b]. Then there is an
explicitly definable function h (called the inverse function of f) from [f(a), f(b)]
onto [a, b] such that h(f(x)) = x for every x in [a, b].

Proof. Let us assume f is increasing. For each x in [f(a), f(b)] define h(x) =∗

{r|r ∈ [a, b) ∧ ∀s(s ∈ [a, r] ⊃ f(s) < x)}. Then h is an explicitly definable
function. The proof that h(f(x)) = x is straightforward.

3.7 Differentiation

Proposition 3.7.1 (Limits of functions).
Let f be a function (on some domain) which is continuous around a. (That is,
for any x “close to” a, f is continuous at x. But, f is not necessarily continuous
or even defined at a). Then

lim sup
x→a

f(x), lim sup
x→a+0

f(x), lim sup
x→a−0

f(x)

are definable; hence, if not ∞, they are definable reals. The same is true with
lim inf of f .

Proof. We do one case as an example. The usual definition of lim sup
x→a+0

f(x) is

∗
∩

ε>x>0

∪
0<y<x

f(a+ y).

Since f is continuous around a, this is the same as

∗
∩

ε>r>0

∪
0<s<r

f(a+ s),

which is an abstract in FA.

Definition 3.7.1. If lim sup
x→a

f(x) = lim inf
x→a

f(x), then we call either of them

lim
x→a

f(x).

Proposition 3.7.2. Let f be continuous around a.
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1) If lim sup
x→a

f(x) exists and lim sup
x→a

f(x) < b,

then
∃r < b∃ε > 0∀x(0 ̸= |x− a| < ε ⊃ f(x) < r).

2) If lim inf
x→a

f(x) exists and lim inf
x→a

f(x) > b,

then
∃r > b∃ε > 0∀x(0 ̸= |x− a| < ε ⊃ r < f(x)).

A similar statement also holds for lim sup
x→a+0

,

lim sup
x→a−0

, lim inf
x→a+0

, or lim inf
x→a−0

.

Proof. We prove only 1). Under the hypothesis of 1), we would like to show
that

∃r < b∃ε > 0∀x(0 ̸= |x− a| < ε ⊃ f(x) < r).

It suffices to show that

∃r < b∃ε > 0∀x(0 ̸= |x− a| < ε ⊃ f(x) ≤ r).

Now lim sup
x→a

f(x) < b implies that

∗
∩

ε>r>0

∪
0<ε<r

f(a+ s) < b.

From this it follows that

∃r < b∃n > 0∀s(0 ̸= |s| < 1

n
⊃ f(a+ s) ≤ r).

Since f is continuous around a, the proposition is proved.

Proposition 3.7.3. If f is continuous around a and lim
x→a

f(x) exists, then the

following equivalences hold.

1) c = lim
x→a

f(x) iff

∀ε > 0∃δ > 0∀x(0 ̸= |x− a| < δ ⊃ |f(x)− c| < ε).

2) f is continuous at a iff lim
x→a

f(x) = f(a).

A similar statement to 1) also holds for lim
x→a+0

or lim
x→a−0

.

Proof. 1) Follows easily from Proposition 3.7.2.
2 ) Follows from 1) immediately.

Other basic properties of lim can be proved.
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Proposition 3.7.4. 1) lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x)

if

lim
x→a

f(x) and lim
x→a

g(x) exist .

2) Suppose f and g are continuous in appropriate domains, lim
x→a

f(x)(= b) exists

and lim
y→b

g(y) exists. Then lim
x→a

g(f(x)) exists.

Definition 3.7.2. Assuming that lim
x→0

f(a+ x)− f(a)

x
exists.

f ′(a) = lim
x→0

f(a+ x)− f(a)

x
.

We say that f is differentiable at a if f is continuous at a and f ′(a) exists. If f
is differentiable at every point in the domain of f , then we say f is differentiable.

The following propositions are proved by the usual methods.

Proposition 3.7.5. The composition of differentiable functions are differen-
tiable.

Theorem 3.7.6 (Rolle’s Theorem). Suppose f is differentiable in [a, b] and
f(a) = f(b). Then there exists a definable real c in (a, b) such that f ′(c) = 0.

Theorem 3.7.7 (Mean Value Theorem). Suppose f is differentiable in [a, b].
Then there exists a definable real c in (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

3.8 Integration

We will define the integral as the limit of a finite sum.

Proposition 3.8.1. Let {an} be a sequence of reals. Then{
n∑

i=1

ai

}

is also a sequence of reals.

Proof. Since a rational can be considered as an ordered triple of natural num-
bers and ordered n-tuples of natural numbers can be arithmetically made to
correspondence one-to-one with natural numbers, ordered n-tuples of rational
numbers (n = 0, 1, 2, . . .) can be arithmetically made to one-to-one correspon-
dence with rational numbers. The arithmetical formula “s is an ordered n-tuple
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of rational numbers” is denoted by Ord(n, s). The i-th term of s is denoted by
(s)i. Then

n∑
i=1

(s)i

can be arithmetically definable and

n∑
i=1

ai =

{
t|∃s

(
Ord(n, s) ∧ ∀i(1 ≤ r ≤ n ⊃ (s)i ∈ ai) ∧ t =

n∑
i=1

(s)i

)}
.

Thus {
n∑

i=1

ai

}
is a sequence of reals.

Definition 3.8.1. Consider an abstract {n, i}A(n, i). Suppose that, for every
n, An = {i}A(n, i) = {ani }i is a sequence of reals for which ∀i ≥ π(n)(ani = 0),
where π is a function from natural numbers to natural numbers which is strictly
increasing. We say that A : {n, i}A(n, i) is a partition of [a, b] if the following
condition (denoted by P (a, b, A)) holds:

∀n[∀i(0 < i ≤ π(n) ⊃ ani−1 < ani ∧ an0 = a ∧ anπ(n) = b)]

∧[∀ε > 0∃N∀n ≥ N( max
1≤i≤π(n)

|ai − ai−1| < ε)].

The latter condition can be written as lim
n→∞

max
1≤i≤π(n)

|ai − ai−1| = 0.

An example would be ani = a+
(b− a)

n
i.

Proposition 3.8.2. Let ⟨{An}n, π⟩ be a partition of [a, b] and let f be a con-
tinuous function defined on [a, b], where An = {ani }i. Then

lim
n→∞

π(n)∑
i=1

f(ani )(a
n
i − ani−1)

exists and the limit does not depend on the partition, that is, the limit is uniquely
determined by f and [a, b].

Proof. Follow the ordinary proof. What we need is the uniform continuity of f
on [a, b] which we proved in Theorem 3.6.1.

Definition 3.8.2. Let f be a continuous function on [a, b]. We define

∫ b

a

f(x)dx

by ∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(ani )(a
n
i − ani−1)

where ani = a+
(b− a)

n
· i.
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By Proposition 3.8.2,

∫ b

a

f(x)dx is a definable abstract and is shown to be

a real number.
Various, basic properties of integrals can be easily shown in our system. We

assume all functions are continuous in [a, b].

Proposition 3.8.3. 1) If f(x) ≤ g(x) in [a, b], then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

2)

∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx.

Proposition 3.8.4. Suppose f is continuous in [a, b] and x stands for any

number in [a, b]. Then

∫ x

a

f(x)dx can be defined as a function of x in [a, b].

Proposition 3.8.5. If F (x) =

∫ x

a

f(x)dx, then F is continuous in x; in fact

F is differentiable and F ′(x) = f(x).

3.9 Sequences of functions

Definition 3.9.1. 1) An arithmetical abstract of type [0, 1, 0] say {n, x, r}A(n, x, r),
is called a sequence of functions (defined on a domain D) if ∀n∀x ∈
DR({r}A(n, x, r)). We denote such functions by fn(x) = {r|A(n, x, r)}.

2) Suppose F = {fn} is a sequence of functions (on D). We say that F is point-
wise convergent on D if ∀x(lim sup

n
fn(x) = lim inf

n
fn(x)∧R(lim sup

n
fn(x))),

where the last condition means that the value is not ∞. If F is convergent,
then we denote either value of the above equation by lim

n
fn(x). (If we say

F is convergent we mean F is pointwise convergent.)

It is obvious that lim
n
fn(x) as a function of x is definable. Since we consider

pointwise convergent, all the properties on the limit of fn follows from the
properties of the limit of reals by the routine method. Therefore we omit the
proof in the following.

Proposition 3.9.1. f(x) = lim
n
fn(x) for every x in D if and only if ∀x ∈

D∀ε > 0∃N∀n(n ≥ N ⊃ |f(x)− fn(x)| < ε).
If one (hence both) of those holds, we say that F = {fn} converges to f

(pointwise on D) and write f = lim
n
fn.

The sequence of functions F = {fn} is said to be uniformly convergent on
D if F is convergent (pointwise) and

∀ε > 0∃N∀x ∈ D∀n(n ≥ N ⊃ |(lim
m
fm(x))− fn(x)| < ε).
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Proposition 3.9.2. f = lim fn and lim fn is uniformly convergent if and only
if ∀ε > 0∃N∀x ∈ D∀n(n ≥ N ⊃ |f(x)− fn(x)| < ε).

If this is the case, we say that F = {fn} converges to f uniformly on D.

Definition 3.9.2. Let F = {fn} be a definable sequence of functions. If fn is
continuous for every n, then we say that F is continuous.

Definition 3.9.3. The sequence of functions F = {fn} has the Cauchy property
(is Cauchy) (uniformly on D) if

∀ε > 0∃N∀x ∈ D∀n,m(n,m ≥ N ⊃ |fn(x)− fm(x)| < ε).

Theorem 3.9.3. The sequence of functions F = {fn} is Cauchy (on D) if and
only if F is uniformly convergent on D.

Theorem 3.9.4. If F is continuous and converges uniformly to f , then f is
continuous.

Theorem 3.9.5. Suppose F = {fn} is continuous and converges to f uniformly

in an interval I. Suppose also that

∫
I

fn exists (fn is integrable) for every n.

Then

{∫
I

fn

}
n

is a definable sequence of numbers and lim
n

∫
I

fn =

∫
I

f .

3.10 Infinite series and series of functions

The content of this section is also done by routine methods. We simply list
definitions and theorems without proof. By looking at them, one can easily see
that everything can be done in FA.

Definition 3.10.1. Let {an}n be a sequence of numbers. Then

∞∑
n=1

an

is defined to be

lim sup
n

n∑
i=1

ai.

Such an object is called an infinite series (of {an}n). If this is equal to

lim inf
n

n∑
i=1

ai

and not ∞, then we say that the series converges and the value is

lim
n

n∑
i=1

ai,

which is a real number.
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All the basic properties about infinite series follow.

Definition 3.10.2. Let F = {fn} be a sequence of functions (defined on a do
main D). Then

∞∑
n=1

fn

is defined to be the abstract {x} lim sup
n

lim sup
n

n∑
i=1

fi(x).

(We could start the sum with n = 0.) This is called the series of F. If there is
a subdomain of D, say E, on which

lim sup
n

n∑
i=1

fi(x) = lim inf
n

n∑
i=1

fi(x) (= finite),

then we say that the series
∞∑

n=1

fn

converges in E pointwise (and the value for each x is

lim
n

n∑
i=1

fi(x)).

Definition 3.10.3. A series of functions, say

∞∑
n=1

fn,

is said to converge on D uniformly if it converges pointwise and the convergence
is uniform.

Theorem 3.10.1. If

∀ε > 0∃N∀n,m ≥ N∀x

(∣∣∣∣∣
m∑
i=n

fi(x)

∣∣∣∣∣ < ε

)
,

then
∑
fn is uniformly convergent.

Theorem 3.10.2 (Weinstrass Comparison Test).
Let F = {fn} be a definable sequence of functions and let {Mn} be a definable
sequence of positive numbers. If ∀x(|fn(x)| ≤ Mn) for every n, and

∑
Mn

converges, then
∑
fn is uniform convergent.
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Theorem 3.10.3. Suppose F = {fn} is definable and continuous and
∑
fn

converges to f uniformly, then f is continuous.

Theorem 3.10.4. If F = {fn} is continuous and
∑
fn converges to f uni-

formly on I, where I is our interval, and each fn is integrable over I, then∫
I

f =
∑∫

I

fn.

Theorem 3.10.5. Suppose that F = {fn} is continuous in I = [a, b], that f ′n
exists for each n, that F ′ = {f ′n} is continuous, and

∑
fn converges to f in I

(uniformly). If
∑
f ′n converges uniformly in I, then

∑
f ′n = f ′.

Proposition 3.10.6. Let {an} be a sequence. Then
n∏

i=1

ai is defined as an

abstract.

Proof. The properties ‘there is a zero among ai(1 ≤ i ≤ n)’ and ‘there are an
even number of negative numbers among ai(1 ≤ i ≤ n)’ are arithmetical. So
the problem is reduced to the case that all ai(1 ≤ i ≤ n) are positive. In this
case it is expressed by

∗

{
t|∃s

(
Ord(n, s) ∧ ∀i(1 ≤ i ≤ n ⊃ 0 < (s)i ∈ ai) ∧ t =

n∏
i=1

(s)i

)}
.

Proposition 3.10.7. The power an is defined as an abstract.

Proposition 3.10.8. Let {ai}i be a sequence of numbers. Then F = {aixi}
(i = 0, 1, 2, · · · ) is a sequence of functions. (In fact F is continuous.) Therefore

∞∑
i=0

aix
i

(
= lim sup

n

n∑
i=0

aix
i

)

is definable (as a function of x).

We call a series of function, in the above form, a power series (in x).

Proposition 3.10.9. The root function a1/n is a definable function (for positive
a) of a and n.

Proof. a1/n = ∗{r|r > 0 ∧ (r)n < a}. (Note that we are taking a positive
root.)

Proposition 3.10.10. Let

∞∑
i=0

aix
i be a power series in x. Then the radius of

convergence, say R, is definable.
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Proof.

R =
1

lim sup
n

|an|1/n

Every operation here is arithmetical. If the denominator in the right side is 0,
we say that R = ∞.

Theorem 3.10.11. Let
∑
aix

i be a power series whose radius of convergence
is R. Then, for every b, 0 < b < R, the series converges uniformly on [−b, b].

Theorem 3.10.12. Suppose
∑
anx

n converges to f for |x| < R. Then f ′ exists
and

f ′(x) =
∞∑

n=1

nanx
n−1 for |x| < R.

We can extend the notion of power series to those of the form
∑
an(x− c)n

for a constant c.

3.11 Higher derivatives

Definition 3.11.1. Let f be continuous at x0 and let n > 0. Then f (n)(x0) is
defined as follows. For h ̸= 0, define ∆ny0 by

∆ny0 = f(x0 + nh)−
(
n
1

)
f(x0 + (n− 1)h) + · · ·+ (−1)n

(
n
n

)
f(x0).

Put h = ∆x and define f (n)(x0) by

f (n)(x0) = lim
∆x→0

∆ny0
(∆x)n

.

Note that f (n)(x0) is meaningless unless f(x), f ′(x), . . . , f (n−1)(x) exist and are
continuous at x0. If this is the case and f (n)(x0) exists, then f (n)(x0) is called
the n-th derivative of f at x0. Moreover f (n)(x0) is definable as an abstract
with n and x0. The properties of f (n) are easily shown in FA. (Cf pp. 91–93 in
[21].)

We say that a function f is of class Cn (or f ∈ Cn) on a domain D if it is
defined on D and for every k, 0 ≤ k ≤ n, f (k) exists and is continuous on D,
where f (0) denote f .

A function f is of the class C∞ if f (n) exists and is continuous for every n
or F = {f (n)} is a continuous sequence of functions.

Note that polynomials are of class C∞.

Proposition 3.11.1. Let f be of the class Cn and let x0 be a real in the domain.
The Taylor polynomial of degree n for f at x0 can be defined as an abstract with
a parameter x.
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Proof. Such a polynomial (say P ) is defined as P (x) = an(x− x0)
n + an−1(x−

x0)
n−1 + · · ·+ a0, where ak =

f (n)(x0)

k!
. The polynomial P is definable.

Definition 3.11.2. The function Rn(x) = f(x)− P (x) is called the remainder
of f (with respect to P of f at x). Note that Rn is definable.

Theorem 3.11.2. Suppose f is of the class Cn+1 in an interval I and x0 ∈ I.
Then for any x in I.

Rn(x) =
1

n!

∫ x

x0

f (n+1)(y)(x− y)ndy.

Note that the right hand side is also definable.

Definition 3.11.3. A function f is said to be analytic at x0 if there is an open
interval around x0, say I, on which f is C∞ and for every x in I, lim

n→∞
Rn(x) =

0.

Example.
√
x for an x0 > 0.

Theorem 3.11.3. If f is analytic at x0, then there is a unique, definable se-

quence of numbers, {an}, such that
∞∑
x=0

an(x − x0)
n converges to f around x,

that is, f(x) =
∞∑
x=0

an(x− x0)
n.

The right hand side of the above equation is called the Taylor series for
f(a+ x0).

Proof. The sequence of numbers an =
f (n)(x0)

n!
is uniformly (in n) definable.

Theorem 3.11.4. Let f(x) =
∑
n

an(x − c)n (i.e. the series converges to f)

around c. Then f (n) exists and an =
f (n)(c)

n!
.

3.12 Functions of several variables

Theorem 3.12.1. Let f(x, y) be definable and continuous for x ∈ [a, b] and
y ∈ [c, d].

Then

1) f is uniformly continuous in [a, b]× [c, d],

2) f attain its maximum in [a, b]× [c, d], the maximum is definable, and there
exist definable reals x0 ∈ [a, b] and y0 ∈ [c, d] such that f(x0, y0) is the
maximum.



3.12. FUNCTIONS OF SEVERAL VARIABLES 103

Proof. 1) goes in the same way as in the proof of Theorem 3.6.1.
2) can be also proved in the same way but we prove it in a different way

here.
If g(x) = sup

y∈[c,d]

f(x, y), then g(x) is definable and continuous. Therefore

sup
x∈[a,b]

g(x) is definable.

There exists a definable x0 such that

g(x0) = sup
x∈[a,b]

g(x).

Also, there exists a definable y0 such that

f(x0, y0) = sup
y∈[c,d]

f(x0, y).

Then f(x, y) attains its maximum at (x0, y0).

In the same way as in Theorem 3.12.1, we can prove the following theorem.

Theorem 3.12.2. Let f(x1, . . . , xn) be continuous in x1 ∈ [a1, b1], . . . , xn ∈
[an, bn]. Then

1) f is uniformly continuous in [a1, b1]× · · · × [an, bn],

2) f attains its maximum in [a1, b1]× · · · × [an, bn], the maximum is definable,
and there exist definable reals x1 ∈ [a1, b1], . . . , xn ∈ [an, bn] such that
f(x1, . . . , xn) is the maximum.





Chapter 4

Complex Analysis

4.1 A system of complex numbers

We will formulate the arithmetic of complex numbers in a system of finite types,
which is a conservative extension of Peano Arithmetic. The rational complex
numbers are objects of type 0.

Definition 4.1.1. The system T .
Symbols: N, r, 0, 1, i,+, ·,−,÷,=, <.
The logical system: The system of finite types defined in Chapter 3.
Axioms:

(1) The equality axiom Eq.

(2) Axioms of Peano Arithmetic relativized to N .

(3) MI, the mathematical induction relativized to N .

(4) Axioms on 0, 1,+, ·,−,÷, and < relativized to r.

(5) ∀x∃!y∃!z(r(y)∧r(z)∧x = y+iz) where x, y, z are of type 0 and ∃! expresses
unique existence.

(6) N(a) → r(a).

(7) Axioms on i.

(8) ∀x(r(x) ∧ x > 0 ⊃ ∃y∃z(N(y) ∧N(z) ∧ x = y/z)).

Remark.

1. The intended meaning of the symbols should be self-evident: N(a): a is a
natural number, r(a): a is a real rational, a+ ib: a complex rational with
the real part a and the imaginary part b. The operators +, ·,−,÷, and <
are defined for real rationals.

105
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2. (2) includes N(0).

3. A variable of type 0 stands for a complex rational.

4. We will often abbreviate r(a) ∧ r(b) ∧ a < b to a < b.

Definition 4.1.2. The predicate C(α): α is a complex number, is defined as
follows. Let α be a free variable of type 1. Then C(α) is the following formula:

∃xα(x) ∧ ∃x¬α(x) ∧ ∀x∀y(r(x) ∧ r(y) ⊃

(a(x+ iy) ≡ ∃u∃v(r(u) ∧ r(v) ∧ x < u ∧ y < v ∧ α(u+ iv))).

Proposition 4.1.1. The predicate “α is real” is arithmetical. The “real part”
of α and the “imaginary part” of α are definable as abstracts.

Proof. The predicate R(α): α is real, is defined by

C(α) ∧ ∀x∀y∀z(r(x) ∧ r(y) ∧ r(z) ∧ α(x+ iy) ⊃ (α(x+ iz) ≡ z < 0)).

Similarly Re(α): the real part of α, is defined as {x|r(x)∧∃y(r(y)∧α(x+ iy))},
and Im(α): the imaginary part of α, is defined as {y|r(y)∧∃x(r(x)∧α(x+iy))}.

Note that the real part of α is not “real” in our sense, but

C(α) → R({x+ iy|x ∈ Re(α) ∧ y < 0}).

Similarly with the imaginary part.

Proposition 4.1.2. A complex rational, as a complex number, is definable as
an abstract.

Proof. Let a and b be real rationals. A complex number corresponding to a+ ib
is

{x+ iy|x < a ∧ y < b}.

As in Chapter 3, a complex number corresponding to a complex rational a
should be denoted by â. However we also use a in the place of â.

We can define α = β by ∀x(α(x) ≡ β(x)), which is arithmetical.

Proposition 4.1.3. If C(α), then Re(α) and Im(α) are reals in the sense of
Chapter 3, where all the quantifiers are relativized by r. We denote “α is real”,
in this sense, by R̃(α).

Proposition 4.1.4. Suppose α and β satisfy the condition of reals in the sense
of Chapter 3. Let α + iβ = {x + iy|α(x) ∧ β(y)}. Then C(α + iβ) ∧ Re(α +
iβ) = α ∧ Im(α + iβ) = β. With this notation, C(α) → α = Re(α) + iIm(α).
Furthermore, C(α) → ∃!φ∃!ψ(R̃(φ) ∧ R̃(ψ) ∧ α = φ+ iψ). Then α+ iβ in this
context is definable in α and β.
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Proposition 4.1.5. If R̃(α) and R̃(β), then the four arithmetic operations and
< are defined for α and β.

Proof. The definitions in Chapter 3 relativized by r will do. For example,

α+ β = {z|∃x∃y(r(x) ∧ r(y) ∧ z = x+ y ∧ α(x) ∧ β(y))}.

Remark. Proposition 4.1.5 suggests that we may assume the theory of reals
in Chapter 3 for the reals in the sense of R̃.

Proposition 4.1.6. The four arithmetic operations for complex numbers are
definable.

Proof. Suppose C(α) ∧ C(β). Let a = Re(α), b = Im(α), c = Re(β) and
d = Im(β).

α+ β = (a+ c) + i(b+ d);

α− β = (a− c) + i(b− d);

α · β = (ac− bd) + i(ad+ bc);

α

β
=
ac+ bd

c2 + d2
+ i

−ad+ bc

c2 + d2
,

where the terms in the right hand side of each equation are defined as in Propo-
sition 4.1.5.

Proposition 4.1.7. (1) Let α = a + ib (cf. Proposition 4.1.6). Then α =
a+ i(−b) (the conjugate of α) (which is denoted by a− ib) is definable (in
α).

(2) |α| =
√
a2 + b2 (the absolute value of α) is definable.

Corollary 4.1.8. Re(a) =
α+ α

2
; Im(a) =

α− α

2i
where i is an abbreviation

of 0 + i · 1.

In the subsequent discussion, we employ the usual notations: α = a + i0 is
denoted by a; 0 + ib is denoted by ib; a + i1 is denoted by a + i. Numerals
1, 2, . . . in this context stand for reals rather than rationals.

Definition 4.1.3. A complex number is said to be definable if there is an ab-
stract A such that the complex is expressed as {x}A(x).

Definition 4.1.4. Sequences of complex numbers. The sequences are defined as
in Chapter 3. Namely a sequence of complex numbers is defined by an abstract
(in some parameters) which defines it. Let A(n, x) be a formula such that for
every n(i.e., N(n)) C({x}A(n, x)). Then we say that A defines a sequence,
which we express as {an}n.
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Proposition 4.1.9. (1) The finite sum (of a definable sequence) is definable.

(2) The series (of a definable sequence) is definable.

Proof. Let {an}n be a definable sequence. Let Re(αn) = an and Im(αn) = bn.

(1)
m∑

n=1

αn =
df

m∑
n=1

an + i
m∑

n=1

bn, where
∑
an and

∑
bn

are defined arithmetically (Remark after Proposition 4.1.5; recall that
Re(αn) and Im(αn) are arithmetical in αn).

(2)
∞∑

n=1

αn =
df

(
lim sup

n

n∑
i=1

ai

)
+ i

(
lim inf

n

n∑
i=1

bi

)
.

A series is said to be convergent if lim sup = lim inf = lim.

Proposition 4.1.10. The finite product of a definable sequence is definable.

Proof. Let {αn}n be a sequence where αn = an + ibn. The sequences {an} and
{bn} are definable from {an}. Consider an example, α1 · α2 · α3 · α4. We know,
in arithmetic

α1 · α2 · α3 · α4 = a1a2a3a4 + i[a1a2a3b4 + a1a2b3a4 + a1b2a3a4 + b1a2a3a4] +

i2[a1a2b3b4 + a1b2a3b4 + a1b2b3a4 + b1a2a3b4 + b1a2b3a4 + b1b2a3a4] +

i3[a1b2b3b4 + b1a2b3b4 + b1b2a3b4 + b1b2b3a4] +

i4[b1b2b3b4].

If we denote this in an abbreviated expression,

= [0] + i[1] + i2[2] + i3[3] + i4[4],

we can generalize the expression to an arbitrary n:

(∗) α1 · α2 · · · · · αn =
n∏

i=1

αi = [0] + i[1] + · · ·+ ik[h] + · · ·+ in[n].

where [k] =

(nk)∑
i=1

n∏
j=1

cj , cj = aj or bj and there are k of the bj ’s. In tidying up the

right hand side of (∗), using i2 = −1, we need to use a case by case definition;
n ≡ 0, 1, 2, 3 (mod 4). Suppose, as an example, n ≡ 0 (mod 4). Then in = 1.
So

Re(
n∏

i=1

αi) = [0]− [2] + [4]− · · ·+ [n];

Im(
n∏

i=1

αi) = [1]− [3] + [5]− · · · − [n− 1].
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Thus, it is obvious that [k] is definable (depending on {αi} and n) and

n∏
i=1

αi is

definable (as a function of n).

Corollary 4.1.11. The powers in α, αn (as a function of n) form a definable
function.

Proposition 4.1.12. Let {αn}n be definable. Then lim
n
αn is definable.

Proof. Define lim supαn = lim sup an + i(lim sup bn), where αn = an + ibn,
lim sup an and lim sup bn are definable (Chapter 3), hence the right hand side
is definable. We define lim inf αn similarly. If lim supαn = lim inf αn and each
defines a complex number, that we call limαn. Furthermore limαn is definable.

Proposition 4.1.13. limαn = β if and only if ∀ε > 0∃N∀n ≥ N(|αn−β| < ε)
where ε ranges over positive (real) rational.

Definition 4.1.5. A complex sequence {αn}n is said to be Cauchy if

∀ε > 0∃N∀n,m ≥ N(|αn − αm| < ε).

Proposition 4.1.14. The sequence {αn} is Cauchy if and only if {an} and
{bn} are Cauchy (as real sequences) where αn = an + ibn.

If limαn exists, then we say that {αn} is convergent. If limαn = β, then we
say that {αn} converges to β.

Proposition 4.1.15. The sequence {αn} is convergent if and only if it is
Cauchy.

Proof. The sequence {αn} is convergent if and only if {an} and {bn} are con-
vergent. So, by Proposition 4.1.14, the problem is reduced to the case of real
sequences, which was proved in Chapter 3.

Proposition 4.1.16. (1) The series
∑
αn is convergent if and only if ∀ε >

0∃N∀n ≥ N∀p

(∣∣∣∣∣
n+p∑
n

αn

∣∣∣∣∣ < ε

)
. Therefore {αn} converges to 0 if

∑
αn

is convergent.

(2) If
∑

(αn) converges, then
∑
αn is also absolutely convergent. (It is obvious

that if {αn} is definable, then {|αn|} is also.)

4.2 Analytic functions

Definition 4.2.1. 1) A (definable) domain is an arithmetical abstract of type
2; {φ}D(φ), such that ∀φ(D(φ) ⊃ C(φ)). We write φ ∈ D if D(φ).

2) A (complex) function defined on D is an abstract {φ, x}A(φ, x) such that
∀φ ∈ DC({x}A(φ, x)), where x is of type 0. We write f(γ) = {x|A(γ, x)}.
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In a similar manner we can define functions from “reals” to “reals”, from
“reals” to complex numbers etc.

Definition 4.2.2. 1) Let f be a (complex) function defined in D. Suppose
α ∈ D. We say that f is continuous at α if

∀ε > 0∃δ > 0∀φ ∈ D(|φ− α| < δ ⊃ |f(φ)− f(α)| < ε)

where ε and δ stand for rational reals and | | is the absolute value function.

2) We can define the notion that f is continuous “around α” naturally.

3) The functions, Ref and Imf , whose values are the real part of f and the
imaginary part of f (hence the values are “reals”) respectively, are defin-
able. We can define continuity of such functions in a similar manner as
in 1).

As in Chapter 3, we can show that the composition of functions is definable
and the composition of continuous functions is continuous.

Proposition 4.2.1. A function f is continuous at α if and only if Ref and
Imf are continuous at Re(α) and Im(α) respectively.

Proposition 4.2.2. Suppose f is continuous around α. Then lim sup
φ→α

f(φ) and

lim inf
φ→α

f(φ) are definable.

If two limits are equal, then we write either one as lim
φ→α

f(φ).

Proof. Let g = Ref and h = Imf . We define lim sup g and lim inf g by

lim sup
φ→α

g(φ) = ∗
∩

ε>0

∪
0̸=|a|<ε

g(α+ a) and

lim inf
φ→α

g(α) = ∗
∪

ε>0

∩
0̸=|a|<ε

g(α+ a)

respectively, where a denotes a complex rational. Then we define lim sup f and
lim inf f by

lim sup
φ→α

f(φ) = lim sup
φ→α

g(φ) + i lim sup
φ→α

h(φ)

and

lim inf
φ→α

f(φ) = lim inf
φ→α

g(φ) + i lim inf
φ→α

h(φ)

respectively.

Proposition 4.2.3. 1) lim
φ→α

f(φ) = β if and only if

∀ε > 0∃δ > 0∀φ ∈ D(|φ− α| < δ ⊃ |f(φ)− β| < ε).
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2) lim f(φ) = β if and only if lim g = Reβ and limh = Imβ; where g = Ref
and h = Imf .

3) lim f = β if and only if lim f = β where f is defined by f(α) = Re(f(α))−
iIm(f(α)).

Definition 4.2.3. The derivative of f(α) is defined by f ′(α) = lim sup
φ→α

f(φ)− f(α)

φ− α
.

If this limit exists and f is continuous, then we may say that the derivative exists
at α, or f is differentiable at α.

Definition 4.2.4. A complex function which is differentiable everywhere in
a domain is called analytic. We follow [1] in the terminology. “Analytic” is
usually called “regular” or “holomorphic”.

It is obvious that analytic functions are closed under +,−, ·,÷.

Proposition 4.2.4. Let f be analytic. Partial derivatives
∂f

∂x
and

∂f

∂y
are

definable.

Proof. Let z = x + iy. Then
∂f

∂x
is defined to be lim sup

h→0
R(h)

f(α+ h)− f(α)

h
,

where α + h = (a + h) + ib. If lim sup = lim inf (hence = lim), we say that
the partial derivative exists. Here h →

R(h)
0 means to take “real” h only. Since

this can be replaced by “rational reals”, the derivative is definable. Similarly
∂f

∂y
= lim

h→0
R(h)

f(α+ ih)− f(α)

h
.

Proposition 4.2.5. Let f = u+iv where u = Ref and v = Imf . Let z = x+iy.
Then

∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
and

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
.

As a consequence, the Cauchy-Riemann differential equations for analytic func-

tions hold, namely
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Definition 4.2.5. A domain D is said to be open if

∀φ ∈ D∃r > 0∀ψ(|φ− ψ| < r ⊃ ψ ∈ D)

where r stands for a rational real.

Proposition 4.2.6. Let f = u + iv be defined on an open domain D, where
u = Ref and v = Imf . Let z = x + iy. If u and v have continuous first order
partial derivatives in D and satisfy the Cauchy-Riemann differential equation
in D, then f is analytic in D.
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We can also prove Laplace’s equation and that |f ′(z)|2 is the Jacobian of
u and v. We can define the notion of “harmonic” for definable (real-valued)
complex variable functions.

Definition 4.2.6. A sequence of functions (complex) {fn(z)}n is said to be de-
finable if there is an arithmetical formula A(n, r, z) such that fn(z) = {r}A(n, r, z)
and ∀n∀z ∈ D(C({r}A(n, r, z)), where D is a definable domain of complex num-
bers.

Proposition 4.2.7. If {fn} is a sequence of functions, then the limit of the
sequence and the series of the sequence are definable. See Chapter 3 for details.

As a special case of function series, we can define power series: Let {αn}
be a sequence of complex numbers. The definition of the finite products in
Proposition 4.1.10 can be employed for αn = z there (where z is available).
Therefore (αnz

n) is a sequence of complex functions. We call
∑
αnz

n a power
series with coefficient sequence {αn}.

Proposition 4.2.8. The radius of convergence (Abel) of a power series is de-
finable.

Proof. Let {αn} be the sequence of coefficients of the power series. Then {|αn|}
is definable, hence { n

√
|αn|} is definable. Therefore lim sup

n

n
√
|αn| is definable.

We know that lim exists and it gives the radius of convergence.

4.3 Integration

From now on, we do not make any distinction between free variables and bound
variables since we have a shortage of letters. Let z, z1, z2, . . . stand for complex
numbers, that is, ∀z is an abbreviation of ∀α(C(α) ⊃ · · · ). Let R and C denote
the set of all real numbers and the set of all complex numbers respectively.

Definition 4.3.1. 1) An ordered triple (π, a, b) is called an arc if a < b and
π : [a, b] → C is continuous. We simply say that π is an arc.

2) An ordered quintuple (π, a, b, n, h) is called a piecewise differentiable arc if
(π, a, b) is an arc, h : {0, . . . , n} → [a, b) is a strictly increasing function
with h(0) = a, and π is differential on [ai, ai+1](i = 0, . . . , n), where
ai = h(i) and an+1 = b, and by the differentiability of π, we mean that
π′ exists and is continuous. Usually we say that (π, a = a0 < a1 <
· · · < an < b) is a differentiable arc. We denote differentiable arcs by
γ, γ1, γ2, . . .. Therefore ∀γ stands for

∀π∀a∀b∀n∀h(A(π, a, b, n, h) ⊃

where A(π, a, b, n, h) is the condition on π, a, b, n, h in the definition of
differentiable arc.
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We also use the convention of denoting π(t) by z(t) and its real part and
imaginary part by x(t) and y(t) respectively. Therefore π(t) is expressed
by

z(t) = x(t) + iy(t).

3) We define

∫
γ

f(z)dz by

∫
γ

f(z)dz =

∫ b

a

f(z(t))z′(t)dt

where γ = (π, a, b, n, h) and π is expressed by z.

Let γ1, . . . , γn be piecewise differential arcs. We take the usual definition

of −γ1 and γ1 + · · ·+ γn. The properties of

∫
γ

are easily proved e.g.

∫
−γ

f(z)dz = −
∫
γ

f(z)dz and

∫
γ1+···+γn

fdz =

∫
γ1

fdz + · · ·+
∫
γn

fdz.

4) Let γ = (π, a, b, n, h) be a piecewise differentiable arc and let p(x, y) be a

continuous function of real parameters x and y. We define

∫
γ

p(x, y)dx

and

∫
γ

p(x, y)dy by the following equations

∫
γ

p(x, y)dx =

∫ b

a

p(x(t), y(t))x′(t)dt and

∫
γ

p(x, y)dy =

∫ b

a

p(x(t), y(t))y′(t)dt,

where π is denoted by z, x is Rez, and y is Imz, that is,

z(t) = x(t) + iy(t).

5) An arc (π, a, b) is said to be linear if

∀t ∈ [a, b]π(t) =
1

b− a
((b− t)π(a) + (t− a)π(b)).

Let z1 and z2 be two complex numbers, we define z1□z2 by

z1□z2 iff Rez1 = Rez2 ∨ Imz1 = Imz2.
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A piecewise differentiable arc (π, a = a0 < a1 < · · · < an < b) is said to
be a rectilinear polygon if for every i ≤ n, π is linear on [ai, ai+1] and
π(ai)□π(ai+1).

6) An ordered triple (D, z0,Π) is said to be a region if D is an open do-
main, z0 ∈ D, and for every z ∈ D,Π(z) is a rectilinear polygon in D
from z0 to z. Precisely Π is an ordered quintuple of functions, that is
Π = (Π1,Π2, . . . ,Π5). We will let Ω,Ω0,Ω1, . . . stand for regions, that
is, ∀Ω is an abbreviation of ∀D∀z0∀Π(A(D, z0,Π) ⊃ where A(D, z0,Π)
expresses the condition on D, z0,Π, for regions and ∀Π is an abbreviation
for ∀Π1 · · · ∀Π5.

In our work, we usually give only D for Ω since the construction of Π is
immediate and automatic as is easily seen in the following examples.

Theorem 4.3.1. The line integral

∫
γ

pdx+ qdy, defined in Ω, depends only on

the end points of γ iff there exists an abstract U(x, y) such that U(x, y) is a

function in Ω with partial derivatives
∂U

∂x
= p,

∂U

∂y
= q.

Proof. The sufficiency follows at once. To prove the necessity, let Ω = (C, z0,Π)

and U(x, y) =

∫
γ

pdx+ qdy, where γ = Π(z) and z = x+ iy.

Corollary 4.3.2. The integral

∫
γ

fdz, with continuous f , depends only on the

end points of γ iff f is a derivative of an analytic function in Ω.

From the corollary it follows that∫
γ

(z − a)ndz = 0

for n ̸= −1 and for all closed curves γ which do not pass through a.
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4.4 Cauchy’s Theorem for nice regions

Let Ω be a region and let a rectangle R be defined by the inequalities a ≤ x ≤
b, c ≤ y ≤ d in Ω. The perimeter ofR is directed in the order (a, c), (b, c), (b, d), (a, d).
We refer to this closed curve as the boundary curve of R, and we denote it by
Γ(R).

Theorem 4.4.1. If f(z) is analytic in Ω, then∫
Γ(R)

f(z)dz = 0

Proof. The proof follows the usual method of bisection. We let

η(R) =

∫
Γ(R)

f(z)dz.

If R is divided into four congruent rectangles R(1), R(2), R(3), R(4), then

η(R) = η(R(1)) + η(R(2)) + η(R(3)) + η(R(4)).

We continue dividing each R(k)(k = 1, . . . , 4) into four congruent rectangles, get

R(5), . . . , R(20)

and keep going on. Thus we get on R(n) for every n = 1, 2, 3, . . .. This allows
us to use n in the place of R(n) and we can calculate arithmetically all vertexes
of R(n) in terms of n. Since we can quantifier on n, we can carry out the proof
very easily. As usual we choose R1 among R(1), . . . , R(4) such that

|η(R1)| ≥
1

4
|η(R)|.

We repeat this procedure and get R1, R2, R3, . . . such that Ri+1 is one of four
subrectangles of Ri such that

|η(Ri+1)| ≥
1

4
|η(Ri)|.

Choosing the first one with this condition among R(1), R(2), . . . as the Ri+1, we
can carry out everything arithmetically, for example, η(Ri) is uniformly defined
as an abstract with a parameter i. So we have proved it.
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Let Ω be a region. Whenever we talk about a finite number of points in
Ω, we mean that n and h : {0, . . . , n} → Ω are given. Note that {0, . . . , n} is
definable as an abstract.

Theorem 4.4.2. Let a rectangle R be in Ω and let f(z) be analytic in Ω except
at a finite number of interior points, ζj, of R. If lim

z→ζj
(z− ζj)f(z) = 0 for all j,

then ∫
Γ(R)

f(z)dz = 0.

Proof. Since ζ0, . . . , ζn are given by an abstract, we can arithmetically divide R
into smaller rectangles which contain at most one ζj . After this, it is proved in
the usual way.

Let ∆ be an open circular disk |z− z0| < e. We can easily construct z0,Π so
that (∆, z0,Π) is a region. By the usual proof, we have the following theorems.

Theorem 4.4.3. If f(z) is analytic in ∆, then∫
γ

f(z)dz = 0

for every closed curve γ in ∆.

Theorem 4.4.4. Let f(z) be analytic in the region ∆′, obtained by omitting
a finite number of points ζj from ∆. If f(z) satisfies the condition lim

z→ζj
(z −

ζj)f(z) = 0 for all j, then ∫
γ

f(z)dz = 0

holds for any closed curve γ in ∆.

4.5 Cauchy’s Integral Formula

Let γ be a piecewise differentiable closed curve which does not pass through the
point α. Then the value of the integral∫

γ

dz

z − α

is a multiple of 2πi.
This is proved in the usual way. That is, if

h(t) =

∫ t

a

z′(t)

z(t)− α
dt

where γ is expressed by (z, a = a0 < a1 < · · · < b), then h′(t) =
z′(t)

z(t)− a
is

continuous whenever z′(t) is continuous. Therefore
d

dt
(e−h(t)(z(t)−α)) vanishes



4.5. CAUCHY’S INTEGRAL FORMULA 117

except at a finite number of points. Since e−h(t)(z(t)− α) is continuous, it is a
constant and

eh(t) =
z(t)− α

z(a)− α
.

Since z(b) = z(a), we have eh(b) = 1 and h(b) is a multiple of 2πi. Obviously
everything can be carried out in our system FA.

We let

n(γ, α) =
1

2πi

∫
γ

dz

z − α

and call n(γ, α) the index of α with respect to γ.
Many properties of the index can be proved in FA by the usual method.

Especially, if γ lies inside of a circle, then n(γ, a) = 0 for all points a outside of
the same circle. Also if the line segment ab and γ are disjoint, then n(γ, a) =
n(γ, b).

We can carry out everything in Chapter 3 in [1] in FA almost word by word.
However there are a few things which we have to change. Whenever each of
the regions determined by γ is discussed in [1], we have to change it to a more
restricted situation of a region Ω such that the point z0 of Ω has non-zero index
with respect to γ. This is necessary since ‘Ω is determined by γ’ is not definable
in FA. However we do not need this complicated notion in practice. In every
practical case, Ω and γ are given from the beginning and it is obvious that Ω
is determined by γ. Besides all necessary cases are covered by the following
proposition which is Lemma 2 in Chapter 3 of [1] and proved in the same way.

Proposition 4.5.1. Let z1, z2 be two points on a closed curve γ which does not
pass through the origin. Denote the subarc from z1 to z2 in the direction of the
curve by γ1, and the subarc from z2 to z1 by γ2. Suppose that z1 lies in the
lower half plane and z2 in the upper half plane. If γ1 does not meet the negative
real axis and γ2 does not meet the positive real axis, then n(γ, 0) = 1.

Note that by a curve we mean a piecewise differentiable arc.
Thus we have Cauchy’s integral formula in the form

n(γ, a) · f(a) = 1

2πi

∫
γ

f(z)dz

z − a

if f is analytic in an open dish ∆ and γ is a closed curve in ∆.
Then

f (n)(z) =
n!

2πi

∫
C

f(ζ)dz

(ζ − z)n+1

where f is analytic in Ω, C is a circle whose center is z, and C and the open
disk determined in C are in Ω.

This gives us a simpler expression for f (n) by an abstract. Thus we can carry
out the usual calculations about line integration, differentiation, and limits of
sequences in FA. Consequently we have the theorem on removable singularities
and Taylor’s theorem.
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However when topology is discussed in complex analysis, we have to pay
special attention since many simple arguments in topology cannot be carried
out in FA as they are. The first such case comes in the following theorem.

Theorem 4.5.2. Let f be analytic in a region Ω and let a ∈ Ω. If f(a) and all
derivatives f (n)(a) vanish, then f(z) is identically zero in all of Ω.

Proof. As usual, we can show that f(z) is identically zero in a neighborhood of
a. Since Ω is a region, it suffices to show that f(b) = 0 if the line segment ab is
in Ω. Without loss of generality we assume that a = 0, b = 1 and [0, 1] is in Ω.

First we define a real c by

c =∗ {r|0 ≤ r < 1 ∧ ∀s ∈ [0, r](f(s) and all derivative f (n)(s) vanish)}.

Obviously we have 0 ≤ c ≤ 1. Since f is identically zero in a neighborhood of
0, we have 0 < c. Take any real d with 0 < d < c. First we claim that f(d)
and all derivative f (n)(d) vanish. Suppose not, that is, suppose there exists on
n such that

f (n)(d) ̸= 0.

Since f (n) is continuous at d, there exists an ε > 0 such that ∀r(|r − d| < ε ⊃
f (n)(r) ̸= 0). But this contradicts the definition of c.

By the same argument we can show that f(c) and all derivative f (n)(c)
vanish. Therefore c should be pushed further right if c < b. Consequently
b = c.

From this theorem, we can prove that the zero of an analytic function f
are isolated if f is not identically zero. Therefore we can prove the following
theorem.

Theorem 4.5.3. Let Ω be a region and let f and g be analytic in Ω with
f(z) = g(z) on a set which has an accumulation point in Ω. Then f(z) is
identically equal to g(z) in Ω.

Therefore f(z) is identically zero in Ω, if f(z) vanishes on an arc which does
not reduce to a point. However the following form of the theorem must be
carefully stated.

If f(z) = 0 on a bounded infinite set in Ω, then f(z) is identically zero in Ω.
In order to state this precisely, we define

N = {n|N(n)}.

A set A is said to be infinite if there exists a one-to-one map h from N into A.
Then our theorem is as follows.

Theorem 4.5.4. Let Ω be a region and let f be analytic in Ω. If R is a rectangle
inside Ω and f vanishes on an infinite subset of R, then f(z) is identically zero
in Ω.
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Proof. Assume that f(z) vanishes at distinct points a0, a1, a2, . . . in R. By
using this enumeration, we can use the bisection methods as in the proof of
Cauchy’s theorem in §4 and construct an accumulation point of a0, a1, a2, . . . as
an abstract.

As is seen in these theorems, it is important to enumerate the zeros of f in
Ω. This is done in the following theorem.

Theorem 4.5.5. Let Ω be a region and let f be analytic in Ω. Then we can
construct a function h, as an abstract, to enumerate all zeros of f .

Proof. First fix an enumeration r0, r1, r2, . . . of all complex rational numbers.
Then enumerate all (r, ε) such that r is a complex rational and ε > 0 with

{s||r − s| < ε} ⊆ Ω.

In each such (r, ε), consider the ε-neighborhood of r, denoted by U(r, ε). In
U(r, ε), define s1, s2, . . . by the following condition.

Let si be the first in the enumeration of the rationals such that

si ∈ U(r, ε) ∧ |f(si)| <
1

2i
.

We take a = lim
i→∞

si if it exists and check whether or not a ∈ Ω and f(a) = 0.

If it is the case, we take a. The whole procedure is arithmetic and the theorem
is proved.

By using this theorem, the following theorem is proved in the usual manner.

Theorem 4.5.6. Let f be analytic in a circular disk ∆ and be not identically
zero in ∆. Let zj be the zeros of a function f(z), each zero being counted as
many times as its order indicates. For every closed curve γ in ∆ which does
not pass through a zero ∑

j

n(γ, zj) =
1

2πi

∫
γ

f ′(z)

f(z)
dz,

where the sum has only a finite number of terms ̸= 0.

We can also prove the properties of poles, Weierstrass’ theorem on an es-
sential singularity, and the local properties of analytic functions. The following
form of the maximum principle is proved in the usual manner, too.

Theorem 4.5.7. If f(z) is analytic and nonconstant in a region Ω, then its
absolute value |f(z)| has no maximum in Ω.

However in order to prove a better form of the maximum principle, we need
some preparation in topology.

Theorem 4.5.8. Let D be an open set. Then the closure of D, denoted by D,
is definable as an abstract.
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Proof. We let
D = {z|∀ε > 0∃r ∈ D|z − r| < ε}

where r stands for a complex rational.

Theorem 4.5.9. Let D be open and bounded. If f : D → R is continuous, then
f attains its maximum in D.

Proof. First we let
M =∗ {r|∃s ∈ D r < f(s)}

where s stands for a complex rational and r stands for a real rational. Obviously
M is the least upperbound of f . Fix an enumeration r0, r1, r2, . . . of all complex
rationals. Define s1, s2, . . . as follows.

Let si be the first complex rational in the enumeration such that

si ∈ D ∧M < f(si) +
1

i
.

Then s1, s2, . . . is a sequence in a rectangle. As in the proof of Theorem 4.5.4, we
can construct an accumulation point of s1, s2, . . . as an abstract by the bisection
method. Let s be an accumulation point. Then we have s ∈ D∧ f(s) =M .

By this theorem, we have the following form of the maximum principle.

Theorem 4.5.10. If f(z) is analytic in a bounded region Ω and continuous in
Ω, then the maximum of |f(z)| is taken on the boundary of Ω.

We can also prove the lemma of Schwarz.

4.6 The general form of Cauchy’s Theorem

Since we would like to avoid topological arguments as much as possible, we take
the following definition of simple connectedness.

Definition 4.6.1. Let Ω be a region. Then Ω is said to be simply connected if
n(γ, a) = 0 for all closed curve γ in Ω and all points a which do not belong to
Ω.

This definition of simple connectedness is sufficient for all practical purposes
since in all the practical cases it is easy to show simple connectedness according
to the foregoing definition.

This definition allows us to follow the proofs of §4 and 5 in Chapter 3 in [1]
word by word and we have the following theorem.

Theorem 4.6.1. If f(z) is analytic in a simply connected region Ω, then∫
γ

f(z)dz = 0

for every closed curve γ in Ω.
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Corollary 4.6.2. If f(z) is analytic and ̸= 0 is a simply connected region Ω, a
single-valued analytic branch of log f(z) can be defined in Ω.

We can also prove the Residue Theorem and its applications in Chapter 3
in [1].

4.7 Miscellaneous remarks

The theorem of uniform continuity of a continuous function on a rectangle in
Chapter 3 can be generalized as follows.

Theorem 4.7.1. Let D be a bounded open set and let f be continuous on D.
Then f is uniformly continuous on D.

Proof. Suppose otherwise. Then there exists an ε > 0 such that

∀n∃r1, r2 ∈ D

(
|r1 − r2| <

1

n
∧ |f(r1)− f(r2)| ≥ ε

)
.

By fixing an arithmetical enumeration of all complex rationals, we can arith-
metically construct a sequence (r11, r12), (r21, r22), . . . in D ×D such that

|rn1 − rn2| <
1

n
∧ |f(rn1)− f(rn2)| ≥ ε.

By using the bisection method, we can construct an accumulation point a of
r11, r21, r31, . . . as an abstract. Thus we have a contradiction.

The theorem of Weierstrass on the uniform convergence of analytic functions
is proved in the usual manner in the following formulation.

Theorem 4.7.2. Let Ω0 ⊆ Ω1 ⊆ Ω2 ⊆ · · · be regions and let Ω =
∪
n

Ωn.

Suppose that fn(z) is analytic in Ωn, and that the sequence {fn(z)} converges
to a limit function in Ω, uniformly on every rectangle which is in some Ωm.
Then f(z) is analytic in Ω. Moreover, f ′n(z) converges uniformly to f ′(z) on
every rectangle which is in some Ωm.

Since we gave the definition of D without giving the definition of a closed
set, let us give it now.

Definition 4.7.1. A set of complex numbers is said to be closed, if its compli-
ment is open.

The following two propositions are proved in the usual manner.

Proposition 4.7.3. If F is closed, ∀n(zn ∈ F ), and lim
n→∞

zn = z, then z ∈ F .

Proposition 4.7.4. If D is open, then D is closed.

Many theorems on series can be proved in our system without any change,
e.g. the theorem on the Laurent series.
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4.8 Final remarks

The complex analysis so far developed will be called elementary complex analy-
sis. If we are only concerned with limits, differentiation, integration, and appli-
cations of Cauchy’s theorem, then the elementary complex analysis is sufficient
to carry out all these proof. However we should remark on the limitations of
elementary complex analysis.

1. Essential use of the axiom choice cannot be handled in elementary complex
analysis. Thus the usual proofs of the theorem on normal families and the
Riemann mapping theorem cannot be carried out in elementary complex
analysis. If we need the theorem on the normal families, we have to prove
it using special properties of each individual problem.

2. Many general topological considerations cannot be carried out in elemen-
tary complex analysis. For example, the usual proof of the following the-
orem in a general form cannot be carried out in the elementary complex
analysis.
A topologically connected open set is arcwise connected. Therefore if

we are interested in formalizing topological considerations of mathematical
practice, we have to choose appropriate definitions of topological notions
as we have done in the definition of arc, differentiable arc, region etc.
Which specific definition we choose is usually not determined by specific
informal arguments, for example, such arguments usually (i) only refer to
a concept, not one of ‘its’ definitions, yet (ii) different definitions may be
equivalent only for a stronger theory: the stronger the theory, the more
definitions or properties are equivalent. For the specific case above, any
of the usual definitions of a topologically connected open set in our math-
ematical practice implies in an elementary way that the set is arcwise
connected, and so the theorem above becomes trivial.

3. The general theory of analytic extension and Riemann surfaces cannot be
carried out in elementary complex analysis. Therefore we also have to
make special treatments for special cases.

However the definition of Riemann’s ζ-function by analytic continuation can
obviously be carried out in elementary complex analysis.

Thus classical analytic number theory, for example, the theory in [2] can be
carried out in elementary complex analysis.
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